肖进, 李思涵, 贺小舟, 腾格尔, 贾品荣, 谢玲
客户流失预测是企业客户关系管理的重要内容.在现实的很多客户流失预测建模过程中,由于数据类别的高度不平衡现象的存在,使得模型的分类性能低下,不能很好地进行分类预测.同时由于现实情况中只有少量有类别标签的样本,更多的是无类别标签数据的存在,造成了大量有用信息的浪费.为了解决以上两个问题,本研究将元代价敏感学习,半监督学习和Bagging集成等技术结合,提出了代价敏感的客户流失预测半监督集成模型(semi-supervised ensemble based on metacost,SSEM).该模型主要包括三个阶段:1)用Metacost方法修改初始有标签训练集L的类别标签,得到新的训练集Lm,并将其随机的分为模型训练集Ltr和模型验证集Va;2)使用Va挑选分类精度最高的三个基分类器,并用其选择性标记无类别标签U中的样本,并将它们添加到Ltr中;3)用新的模型训练集Ltr训练N个基本分类模型,并对测试集样本进行分类,进一步将分类结果进行集成.在两个客户流失预测数据集上进行实证分析,将SSEM模型与常用的监督式集成模型以及半监督式集成模型相比,结果表明,SSEM具有更好的客户流失预测性能.