针对电子健康服务管理中的多源数据融合难题,利用人工智能技术,结合多任务学习理论与支持向量机理论提出基于多任务支持向量机的数据融合方法(multi-tasksupport vector machine for data fusion,简称mSVMDF).该方法对具有相同数据源的特征向量构造基于支持向量机的融合模型,在多任务学习框架下考虑结构稀疏性与各模型关联性的有机结合,以实现对具有不同数据源个数的多源数据的融合,并以多源影像数据与常规检验数据融合为例,开展数值实验验证方法的有效性.实验结果表明mSVMDF方法可以有效地融合具有不同数据源个数的多源数据,同时该方法具有较好的分类性能与结构稀疏性.