划分序乘积空间约简算法研究

徐怡, 陶强

系统工程理论与实践 ›› 2025, Vol. 45 ›› Issue (2) : 554-570.

PDF(512 KB)
PDF(512 KB)
系统工程理论与实践 ›› 2025, Vol. 45 ›› Issue (2) : 554-570. DOI: 10.12011/SETP2023-2131
论文

划分序乘积空间约简算法研究

    徐怡1,2, 陶强1
作者信息 +

Research on the reduction algorithm under partition order product space

    XU Yi1,2, TAO Qiang1
Author information +
文章历史 +

摘要

多视角和多层次是粒计算(granular computing)中问题求解的两个基本原则. 划分序乘积空间作为一种新的粒计算模型, 遵循多视角和多层次的原则, 能够从多个视角和多个层次来描述和解决问题. 但是划分序乘积空间是一种格结构, 在划分序乘积空间中寻找合适的问题求解层通常是一个NP难问题, 特别是当视角和层次存在冗余时, 会导致划分序乘积空间结构庞大且复杂. 因此通过对视角和层次的约简, 可以有效降低划分序乘积空间的复杂性. 现有的度量指标, 例如决策支持度、 条件熵、 最大包含度和距离度量等, 不能有效地对视角、 层次和属性进行约简, 本文在划分序乘积空间中将距离度量、 最大包含度和最大决策的概念相结合, 引入了一种新的基于距离度量最大包含熵的单调不确定性度量标准. 在此基础上, 分别定义了视角重要度、 层次重要度与属性重要度, 并且分别给出了视角、 层次和属性的约简算法, 可以对多个视角进行约简、 多个视角中的多个层次进行约简和对每个层次中的属性进行约简, 有效降低了划分序乘积空间下的复杂度. 实验结果证明了, 所提约简算法的有效性.

Abstract

Multi-view and multi-level are the two basic principles of problem solving in granular computing. Partition order product space as a new granular computing model follows the principle of multi-view and multi-level, which can describe and solve problems from multi-view and multi-level. However, partition order product space is a lattice structure, and finding a suitable problem solving layer in partition order product space is usually an NP difficult problem, especially when there is redundancy in views and levels, which will lead to the large and complex structure of partition order product space. Therefore, by reducing the views and levels, the complexity of partition order product space can be effectively reduced. Existing metrics, such as decision support, conditional entropy, maximum inclusion and distance measurement, cannot effectively reduce the views, levels and attributes, and this paper combines the concepts of distance measurement, maximum inclusion and maximum decision in the partition order product space, and introduces a new monotonic uncertainty metric based on distance measurement of maximum inclusion entropy. On this basis, the importance of view and level importance are defined respectively, and the reduction algorithms of view and level are given respectively, which can reduce multi-views and multi-levels under each view, which effectively reduces the complexity under the partition order product space. Experimental results prove the effectiveness of the proposed reduction algorithm.

关键词

多视角 / 多层次 / 视角约简 / 层次约简 / 属性约简 / 划分序乘积空间 / 距离度量

Key words

multi-view / multi-level / view reduction / level reduction / attribute reduction / partition order product space / distance measurement

引用本文

导出引用
徐怡 , 陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践, 2025, 45(2): 554-570 https://doi.org/10.12011/SETP2023-2131
XU Yi , TAO Qiang. Research on the reduction algorithm under partition order product space. Systems Engineering - Theory & Practice, 2025, 45(2): 554-570 https://doi.org/10.12011/SETP2023-2131
中图分类号: TP18   

参考文献

[1] 徐雪松, 彭雅洁, 陈晓红, 等. 基于粒计算的突发性复合疫情风险评估模型构建[J]. 系统工程理论与实践, 2023, 43(2): 583-597.Xu X S, Peng Y J, Chen X H, et al. Construction of risk assessment model for sudden compound epidemic based on granular computing[J]. Systems Engineering—Theory & Practice, 2023, 43(2): 583-597.
[2] 苗夺谦. 粒计算: 过去, 现在与展望[M]. 北京: 科学出版社, 2007. Miao D Q. Granular computing: Past, present and outlook[M]. Beijing: Science Press, 2007.
[3] 刘清, 刘群. 粒及粒计算在逻辑推理中的应用[J]. 计算机研究与发展, 2004, 41(4): 546-551.Liu Q, Liu Q. Application of grain and grain calculation in logical reasoning[J]. Computer Research and Development, 2004, 41(4): 546-551.
[4] 吴宗友, 田英杰, 付赛际. 稀疏多视角学习及其在疾病诊断中的应用研究[J]. 系统工程理论与实践, 2023, 43(2): 556-567.Wu Z Y, Tian Y J, Fu S J. Sparse multi-view learning and its application in disease diagnosis[J]. Systems Engineering—Theory & Practice, 2023, 43(2): 556-567.
[5] 王国胤, 张清华, 胡军. 粒计算研究综述[J]. 智能系统学报, 2007(6): 8-26.Wang G Y, Zhang Q H, Hu J. Summary of grain calculation studies[J]. Journal of Intelligent Systems, 2007(6): 8-26.
[6] Hao C, Li J H, Fan M, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information Sciences, 2017, 415-416: 213-232.
[7] Savchenko A V. Fast multi-class recognition of piecewise regular objects based on sequential three-way decisions and granular computing[J]. Knowledge-Based Systems, 2016, 91: 252-262.
[8] Yang X, Li T R, Fujita H, et al. A unified model of sequential three-way decisions and multilevel incremental processing[J]. Knowledge-Based Systems, 2017, 134: 172-188.
[9] Sang Y L, Liang J Y, Qian Y H. Decision-theoretic rough sets under dynamic granulation[J]. Knowledge-Based Systems, 2016, 91: 84-92.
[10] Qian J, Liu C H, Miao D Q, et al. Sequential three-way decisions via multi-granularity[J]. Information Sciences, 2020, 507: 606-629.
[11] 徐怡, 姚一豫. 划分序乘积空间: 基于划分的粒计算模型[J]. 计算机研究与发展, 2019, 56(4): 836-843.Xu Y, Yao Y Y. Division sequence product space: A particle calculation model based on partition[J]. Computer Research and Development, 2019, 56(4): 836-843.
[12] 徐怡, 邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择[J]. 软件学报, 2024, 35(4): 1945-1963.Xu Y, Qiu Z H. Problem solving level selection in partition order product space based on genetic algorithm[J]. Journal of Software, 2024, 35(4): 1945-1963.
[13] Yue X D, Cao L B, Miao D Q, et al. Multi-view attribute reduction model for traffic bottleneck analysis[J]. Knowledge-Based Systems, 2015, 86: 1-10.
[14] Sang B B, Guo Y T, Shi D R, et al. Decision-theoretic rough set model of multi-source decision systems[J]. International Journal of Machine Learning and Cybernetics, 2018, 9: 1941-1954.
[15] Che X Y, Mi J S, Chen D G. Information fusion and numerical characterization of a multi-source information system[J]. Knowledge-Based Systems, 2018, 145: 121-133.
[16] Huang Y Y, Guo K J, Yi X W, et al. Matrix representation of the conditional entropy for incremental feature selection on multi-source data[J]. Information Sciences, 2022, 591: 263-286.
[17] You D L, Sun M M, Liang S P, et al. Online feature selection for multi-source streaming features[J]. Information Sciences, 2022, 590: 267-295.
[18] Qian J, Dang C Y, Yue X D, et al. Attribute reduction for sequential three-way decisions under dynamic granulation[J]. International Journal of Approximate Reasoning, 2017, 85: 196-216.
[19] Huang B, Wu W Z, Yan J J, et al. Inclusion measure-based multi-granulation decision-theoretic rough sets in multi-scale intuitionistic fuzzy information tables[J]. Information Sciences, 2020, 507: 421-448.
[20] Huang Z H, Li J J. Multi-scale covering rough sets with applications to data classification[J]. Applied Soft Computing, 2021, 110: 107736.
[21] Wu W Z, Leung Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18): 3878-3897.
[22] Qian J, Hong C X, Yu Y, et al. Generalized multigranulation sequential three-way decision models for hierarchical classification[J]. Information Sciences, 2022, 616: 66-87.
[23] Bao H, Wu W Z, Zheng J W, et al. Entropy based optimal scale combination selection for generalized multi-scale information tables[J]. International Journal of Machine Learning and Cybernetics, 2021, 12: 1427-1437.
[24] Zhang J W, Xiong L X, Bian D X. Fault diagnosis of switched reluctance motor power converter based on VMD-MPE[C]// 2021 24th International Conference on Electrical Machines and Systems (ICEMS), 2021: 2546-2550.
[25] Gao C, Zhou J, Xing J M, et al. Parameterized maximum-entropy-based three-way approximate attribute reduction[J]. International Journal of Approximate Reasoning, 2022, 151: 85-100.
[26] Gao C, Lai Z H, Zhou J, et al. Maximum decision entropy-based attribute reduction in decision-theoretic rough set model[J]. Knowledge-Based Systems, 2018, 143: 179-191.
[27] Yuan Z, Chen H M, Yang X L, et al. Fuzzy complementary entropy using hybrid-kernel function and its unsupervised attribute reduction[J]. Knowledge-Based Systems, 2021, 231: 107398.
[28] 周艳红, 张贤勇, 莫智文. 粒化单调的条件邻域熵及其相关属性约简[J]. 计算机研究与发展, 2018, 55(11): 2395-2405.Zhou Y H, Zhang X Y, Mo Z W. Granained monotonic conditional neighborhood entropy and its associated properties reduced[J]. Computer Research and Development, 2018, 55(11): 2395-2405.
[29] Wang C Z, Huang Y, Shao M, et al. Feature selection based on neighborhood self-information[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 4031-4042.
[30] Shen Q, Jiang Y L. Attribute reduction of multi-valued information system based on conditional information entropy[C]// 2008 IEEE International Conference on Granular Computing, 2008: 562-565.
[31] Xu F F, Miao D Q, Wei L. An approach for fuzzy-rough sets attributes reduction via mutual information[C]// Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), 2007: 107-112.
[32] 袁钟, 陈红梅, 王志红, 等. 利用混杂核模糊补互信息选择特征[J]. 计算机研究与发展, 2023, 60(5): 1111-1120.Yuan Z, Chen H M, Wang Z H, et al. Exploiting hybrid kernel-based fuzzy complementary mutual information for selecting features[J]. Journal of Computer Research and Development, 2023, 60(5): 1111-1120.
[33] 胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简[J]. 软件学报, 2008(3): 640-649.Hu Q H, Yu D R, Xie Z X. Numerical property reduction based on neighborhood granulation and coarse approximation[J]. Journal of Software, 2008(3): 640-649.
[34] Catanzariti F, Chiaselotti G, Infusino F G, et al. Object similarity measures and Pawlak's indiscernibility on decision tables[J]. Information Sciences, 2020, 539: 104-135.
[35] Hao C, Li J H, Fan M, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information Sciences, 2017, 415: 213-232.
[36] Liu F L, Zhang B W, Ciucci D, et al. A comparison study of similarity measures for covering-based neighborhood classifiers[J]. Information Sciences, 2018, 448: 1-17.
[37] Luo C, Cao Q, Li T R, et al. MapReduce accelerated attribute reduction based on neighborhood entropy with Apache Spark[J]. Expert Systems with Applications, 2023, 211: 118554.
[38] Yuan Z, Chen H M, Li T R. Exploring interactive attribute reduction via fuzzy complementary entropy for unlabeled mixed data[J]. Pattern Recognition, 2022, 127: 108651.
[39] Qian Y H, Liang J Y, Yao Y Y, et al. MGRS: A multi-granulation rough set[J]. Information Sciences, 2010, 180(6): 949-970.
[40] Ju H R, Ding W P, Shi Z Q, et al. Attribute reduction with personalized information granularity of nearest mutual neighbors[J]. Information Sciences, 2022, 613: 114-138.
[41] Covavisaruch N, Prateepamornkul P. Personal identification system using hand geometry and iris pattern fusion[C]// 2006 IEEE International Conference on Electro/Information Technology, 2006: 597-602.
[42] Wu H, Levinson D. The ensemble approach to forecasting: A review and synthesis[C]// Transportation Research Part C: Emerging Technologies, 2021, 132: 103357.
[43] Gunal S, Edizkan R. Subspace based feature selection for pattern recognition[J]. Information Sciences, 2008, 78(19): 3716-3726.
[44] Castanedo F. A Review of data fusion techniques[J]. The Scientific World Journal, 2013.doi: 10.1155/2013/704504.
[45] Zhang S C, Li X L, Zong M, et al. Efficient KNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1774-1785.
[46] Cervantes J, Garcia-Lamont F, Rodriguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215.
[47] Yu Z, Haghighat F, Fung B C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10): 1637-1646.
[48] 姚海祥, 李晓鑫, 房勇. 基于AdaBoost集成算法和Black-Litterman模型的资产配置[J]. 系统工程理论与实践, 2023, 43(11): 3182-3196.Yao H X, Li X X, Fang Y. Asset allocation based on AdaBoost ensemble algorithm and the Black-Litterman model[J]. Systems Engineering—Theory & Practice, 2023, 43(11): 3182-3196.

基金

国家自然科学基金(62076002,61402005,61972001);安徽省自然科学基金(2008085MF194,1308085QF114,1908085MF188);安徽省高等教育自然科学基金(KJ2013A015)
PDF(512 KB)

156

Accesses

0

Citation

Detail

段落导航
相关文章

/