不确定信息下跨期动态的混合减排政策研究

江民星, 贺一江, 朱帮助

系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (7) : 2213-2226.

PDF(1210 KB)
PDF(1210 KB)
系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (7) : 2213-2226. DOI: 10.12011/SETP2023-1833
论文

不确定信息下跨期动态的混合减排政策研究

    江民星1, 贺一江1, 朱帮助2
作者信息 +

Intertemporal dynamic hybrid policy design for emissions control with information uncertainty

    JIANG Minxing1, HE Yijiang1, ZHU Bangzhu2
Author information +
文章历史 +

摘要

企业减排成本信息不确定性是总量控制(数量政策)或排污费(价格政策)等减排政策低效的重要原因. 为缓解这种单一政策低效性, 本文考虑配额可储存和借贷的跨期动态情形, 在总量控制交易框架引入单边上限价格约束、单边下限价格约束、双边价格约束机制, 分别设计三类数量-价格相结合的混合政策. 本文证明了三类混合政策的市场分散均衡均可实现排放权有效配置; 在减排成本信息不可更新条件下, 三类混合政策效率严格优于数量或价格政策, 且双边价格约束严格优于单边价格约束的混合政策; 成本信息可更新条件下, 三类混合政策、数量政策和价格政策的效率等价, 且可实现总成本有效. 针对中国碳市场的数值模拟分析表明, 混合政策比现行总量控制交易制度可产生显著成本节约, 且双边价格约束的混合政策碳价波动最小.

Abstract

The information uncertainty of firms' emissions abatement cost is the main reason for inefficiency of environmental management instruments, such as cap control (quantity policy) or emission charges (price policy). To alleviate the inefficiency of such unitary policy, this paper designs three types of quantity-price hybrid policy with ceiling price, floor price, and bilateral price collars in the framework of cap-and-trade with banking and borrowing mechanisms. We prove that each hybrid policy is of achieving efficient market allocation in decentralized equilibrium. In the case of non-updating information, all the hybrid policies strictly dominate the quantity and price policies, and the hybrid policy with bilateral price collars strictly dominates that with unilateral price collar. There is no difference in efficiency between hybrid policies, quantity policy, and price policy in the case of updating information, and each makes the least-cost attainable. Numerical simulation analysis of China's carbon market shows that the hybrid policies lead to remarkable cost savings compared to cap-and-trade, and hybrid policy with bilateral price collars has the lowest carbon price volatility.

关键词

不确定信息 / 减排成本 / 混合政策 / 数量和价格政策 / 储存与借贷

Key words

information uncertainty / abatement costs / hybrid policies / quantity and price policy / banking and borrowing

引用本文

导出引用
江民星 , 贺一江 , 朱帮助. 不确定信息下跨期动态的混合减排政策研究. 系统工程理论与实践, 2024, 44(7): 2213-2226 https://doi.org/10.12011/SETP2023-1833
JIANG Minxing , HE Yijiang , ZHU Bangzhu. Intertemporal dynamic hybrid policy design for emissions control with information uncertainty. Systems Engineering - Theory & Practice, 2024, 44(7): 2213-2226 https://doi.org/10.12011/SETP2023-1833
中图分类号: X196   

参考文献

[1] Weitzman M L. Prices vs. quantities[J]. Review of Economic Studies, 1974, 41(4): 477-491.
[2] Roberts M J, Spence M. Effluent charges and licenses under uncertainty[J]. Journal of Public Economics, 1976, 5(3-4): 193-208.
[3] 吴力波, 钱浩祺, 汤维祺. 基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J]. 经济研究, 2014, 49(9): 48-61. Wu L B, Qian H Q, Tang W Q. Selection mechanism between emission trading and carbon tax based on simulation of dynamic marginal abatement cost[J]. Economic Research Journal, 2014, 49(9): 48-61.
[4] 夏西强, 李梦雅, 路梦圆. 碳减排政策对授权再制造影响的对比研究[J]. 系统工程理论与实践, 2023, 43(5): 1380- 1395. Xia X Q, Li M Y, Lu M Y. Comparative study on the impact of carbon emission reduction policies on authorized remanufacturing[J]. Systems Engineering—Theory & Practice, 2023, 43(5): 1380-1395.
[5] Lintunen J, Kuusela O P. Business cycles and emission trading with banking[J]. European Economic Review,2018, 101: 397-417.
[6] Rubin J D. A model of intertemporal emission trading, banking, and borrowing[J]. Journal of Environmental Economics and Management, 1996, 31(3): 269-286.
[7] 朱帮助, 江民星, 袁胜军, 等. 配额初始分配对跨期碳市场效率的影响研究[J]. 系统工程理论与实践, 2017, 37(11): 2802-2811. Zhu B Z, Jiang M X, Yuan S J, et al. Exploring the impacts of initial permits allocation on the effciency of intertemporal carbon market[J]. Systems Engineering—Theory & Practice, 2017, 37(11): 2802-2811.
[8] Burtraw D, Palmer K, Kahn D. A symmetric safety valve[J]. Energy Policy, 2010, 38(9): 4921-4932.
[9] Fell H, Mackenzie I A, Pizer W A. Prices versus quantities versus bankable quantities[J]. Resource and Energy Economics, 2012, 34(4): 607-623.
[10] Fell H, Burtraw D, Morgenstern R D, et al. Soft and hard price collars in a cap-and-trade system: A comparative analysis[J]. Journal of Environmental Economics and Management, 2012, 64(2): 183-198.
[11] Jacoby H D, Ellerman A D. The safety valve and climate policy[J]. Energy Policy, 2004, 32(4): 481-491.
[12] Pizer W A. Combining price and quantity controls to mitigate global climate change[J]. Journal of Public Economics, 2002, 85(3): 409-434.
[13] Unold W, Requate T. Pollution control by options trading[J]. Economics Letters, 2001, 73(3): 353-358.
[14] Mandell S. Optimal mix of emissions taxes and cap-and-trade[J]. Journal of Environmental Economics and Management, 2008, 56(2): 131-140.
[15] Krysiak F C, Oberauner I M. Environmental policy à la carte: Letting firms choose their regulation[J]. Journal of Environmental Economics and Management, 2010, 60(3): 221-232.
[16] Maeda A. Setting trigger price in emissions permit markets equipped with a safety valve mechanism[J]. Journal of Regulatory Economics, 2011, 41(3): 358-379.
[17] Weber T A, Neuhoff K. Carbon markets and technological innovation[J]. Journal of Environmental Economics and Management, 2010, 60(2): 115-132.
[18] Stranlund J K, Mofftt L J. Enforcement and price controls in emissions trading[J]. Journal of Environmental Economics and Management, 2014, 67(1): 20-38.
[19] Abrell J, Rausch S. Combining price and quantity controls under partitioned environmental regulation[J]. Journal of Public Economics, 2017, 145: 226-242.
[20] Philibert C. Assessing the value of price caps and floors[J]. Climate Policy, 2011, 9(6): 612-633.
[21] 魏立佳, 彭妍, 刘潇. 碳市场的稳定机制: 一项实验经济学研究[J]. 中国工业经济, 2018(4): 174-192. Wei L J, Peng Y, Liu X. The stability mechanism of the carbon market: A study of experimental economics[J]. China Industrial Economics, 2018(4): 174-192.
[22] Newell R G, Pizer W A. Indexed regulation[J]. Journal of Environmental Economics and Management, 2008, 56(3): 221-233.
[23] Ellerman A D, Wing I S. Absolute versus intensity-based emission caps[J]. Climate Policy, 2003, 3: 7-20.
[24] Kolstad C D. The simple analytics of greenhouse gas emission intensity reduction targets[J]. Energy Policy, 2005, 33(17): 2231-2236.
[25] Jotzo F, Pezzey J C V. Optimal intensity targets for greenhouse gas emissions trading under uncertainty[J]. Environmental and Resource Economics, 2007, 38(2): 259-284.
[26] Fischer C, Springborn M. Emissions targets and the real business cycle: Intensity targets versus caps or taxes[J]. Journal of Environmental Economics and Management, 2011, 62(3): 352-366.
[27] Sue Wing I, Ellerman A D, Song J. Absolute vs. intensity limits for CO2 emission control: Performance under uncertainty[R]: MIT Joint Program on the Science and Policy of Global Change, 2006.
[28] Quirion P. Does uncertainty justify intensity emission caps?[J]. Resource and Energy Economics, 2005, 27(4): 343-353.
[29] Webster M, Sue Wing I, Jakobovits L. Second-best instruments for near-term climate policy: Intensity targets vs. the safety valve[J]. Journal of Environmental Economics and Management, 2010, 59(3): 250-259.
[30] Wang B, Pizer W A, Munnings C. Price limits in a tradable performance standard[J]. Journal of Environmental Economics and Management, 2022, 116: 102742.
[31] Holt C A, Shobe W M. Reprint of: Price and quantity collars for stabilizing emission allowance prices: Laboratory experiments on the EU ETS market stability reserve[J]. Journal of Environmental Economics and Management, 2016, 80: 69-86.
[32] Koch N, Grosjean G, Fuss S, et al. Politics matters: Regulatory events as catalysts for price formation under cap-and-trade[J]. Journal of Environmental Economics and Management, 2016, 78: 121-139.
[33] Perino G, Willner M. Procrastinating reform: The impact of the market stability reserve on the EU ETS[J]. Journal of Environmental Economics and Management, 2016, 80: 37-52.
[34] Salant S W. What ails the European Unionffs emissions trading system?[J]. Journal of Environmental Economics and Management, 2016, 80: 6-19.
[35] Chaton C, Creti A, Sanin M E. Assessing the implementation of the market stability reserve[J]. Energy Policy, 2018, 118: 642-654.
[36] Kollenberg S, Taschini L. Emissions trading systems with cap adjustments[J]. Journal of Environmental Economics and Management, 2016, 80: 20-36.
[37] Fell H. Comparing policies to confront permit over-allocation[J]. Journal of Environmental Economics and Management, 2016, 80: 53-68.
[38] Heijmans R J. Adjustable emissions caps and the price of pollution[J]. Journal of Environmental Economics and Management, 2023, 118: 102793.
[39] Yu J, Mallory M L. An optimal hybrid emission control system in a multiple compliance period model[J]. Resource and Energy Economics, 2015, 39: 16-28.
[40] Weitzman M L. Prices or quantities can dominate banking and borrowing[J]. The Scandinavian Journal of Economics, 2020, 122(2): 437-463.
[41] Pizer W A, Prest B C. Prices versus quantities with policy updating[J]. Journal of the Association of Environmental and Resource Economists, 2020, 7(3): 483-518.
[42] Heutel G. Bankability and information in pollution policy[J]. Journal of the Association of Environmental and Resource Economists, 2020, 7(4): 779-799.
[43] Hagem C, Westskog H. The design of a dynamic tradeable quota system under market imperfections[J]. Journal of Environmental Economics and Management, 1998, 36(1): 89-107.
[44] 陈晓红, 汪静, 胡东滨. 碳配额免费分配法下寻租对市场运行效率影响[J]. 系统工程理论与实践, 2018, 38(1): 93- 101. Chen X H, Wang J, Hu D B. Study on the effect of rent-seeking on carbon emission trading market performance under free carbon emission allowances[J]. Systems Engineering—Theory & Practice, 2018, 38(1): 93-101.
[45] 王梅, 周鹏. 碳排放权分配对碳市场成本有效性的影响研究[J]. 管理科学学报, 2020, 23(12): 1-11. Wang M, Zhou P. Assessing the impact of emission permit allocation on the cost effectiveness of carbon market[J]. Journal of Management Sciences in China, 2020, 23(12): 1-11.
[46] Newell R G, Pizer W A. Regulating stock externalities under uncertainty[J]. Journal of Environmental Economics and Management, 2003, 45(2): 416-432.
[47] Ellerman A D, Jacoby H D, Decaux A. The effects on developing countries of the Kyoto Protocol and CO2 emissions trading[M]. Washington D C: World Bank Publications, 1998.
[48] Jiang K, Hu X. China and global greenhouse gases emission analysis model (IPAC-Emission)[C]// Proceeding of Climate Change Policy Assessment, ERI Report ERI-CEEI-2002-01, 2002: 116-132.
[49] Jiang M X, Zhu B Z, Wei Y M, et al. An intertemporal carbon emissions trading system with cap adjustment and path control[J]. Energy Policy, 2018, 122: 152-161.
[50] 朱帮助, 唐隽捷, 江民星, 等. 基于系统动力学的碳市场风险模拟与调控研究[J]. 系统工程理论与实践, 2022, 42(7): 1859-1872. Zhu B Z, Tang J J, Jiang M X, et al. Simulation and regulation of carbon market risk based on system dynamics[J]. Systems Engineering—Theory & Practice, 2022, 42(7): 1859-1872.

基金

国家自然科学基金(72243002,71903099,71771105);教育部人文社会科学研究青年基金(23YJC790052
PDF(1210 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/