重大突发公共卫生事件防控策略计算实验分析

刘明, 开吉, 曹杰

系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (6) : 1950-1964.

PDF(991 KB)
PDF(991 KB)
系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (6) : 1950-1964. DOI: 10.12011/SETP2023-1459
论文

重大突发公共卫生事件防控策略计算实验分析

    刘明1, 开吉1, 曹杰2
作者信息 +

Computational experiment analysis of prevention and control strategies for major public health emergencies

    LIU Ming1, KAI Ji1, CAO Jie2
Author information +
文章历史 +

摘要

本文借鉴外来物种入侵管理思想,构建一类重大突发公共卫生事件防控策略计算实验分析模型.该模型综合考虑了病毒传播扩散过程中的多重异质性,不仅为重大突发公共卫生事件的当前和未来演变构建演化情景,分析不同非医疗干预措施对事件发展的影响,提供升级防控措施的最优时空节点和最小化总感染人数的策略,而且通过病毒检测约束设计,将常见的几种疫情防控策略进行了有机统一刻画.计算实验结果表明,在重大突发公共卫生事件应急响应初期,采取动态清零策略具有其独特的价值,在感染者人数、重症率、危重症率等方面都显著优于其它策略;研究同时发现病毒检测效率、 接触系数等均存在明显的边际递减效应,而强软社交距离政策联合使用效果更优.

Abstract

Inspired by the idea of invasive species management, a computational experiment analysis model of prevention and control strategies for major public health emergencies is proposed in this paper. This model deeply characterizes the multiple heterogeneity in the process of virus transmission. It envisions the scenarios for the current and future evolution of major public health emergencies, analyzes the impact of different non-pharmaceutical interventions on epidemic development, provides the optimal spatiotemporal nodes for upgrading prevention and control measures, and offers strategy for minimizing the total number of infections. Meanwhile, several common epidemic prevention and control strategies have been organically unified and characterized by through the design of virus testing constraints. The computational experimental results indicate that in the early stages of emergency response to major public health emergencies, adopting dynamic reset strategies has its unique value, and is significantly superior to other strategies in terms of the number of infected individuals, severity rate, and critical illness rate. Our study also finds that there is a significant marginal decreasing effect in virus testing efficiency and contact coefficient. Furthermore, the combination of strong and soft social distance policies would have a better effect.

关键词

重大突发公共卫生事件 / 防控策略 / 计算实验 / 入侵物种管理 / 资源配置

Key words

major public health emergencies / prevention and control strategies / computational experiment / invasive species management / resource allocation

引用本文

导出引用
刘明 , 开吉 , 曹杰. 重大突发公共卫生事件防控策略计算实验分析. 系统工程理论与实践, 2024, 44(6): 1950-1964 https://doi.org/10.12011/SETP2023-1459
LIU Ming , KAI Ji , CAO Jie. Computational experiment analysis of prevention and control strategies for major public health emergencies. Systems Engineering - Theory & Practice, 2024, 44(6): 1950-1964 https://doi.org/10.12011/SETP2023-1459
中图分类号: C935   

参考文献

[1] Kaplan E H, Craft D L, Wein L M. Analyzing bioterror response logistics: The case of smallpox[J]. Mathematical Biosciences, 2003, 185(1): 33-72.
[2] 刘明, 曹杰, 章定. 数据驱动的疫情应急物流网络动态调整优化[J]. 系统工程理论与实践, 2020, 40(2): 437-448. Liu M, Cao J, Zhang D. Dynamic adjustment method for optimizing epidemic-logistics network based on data-driven[J]. Systems Engineering—Theory & Practice, 2020, 40(2): 437-448.
[3] Lasry A, Zaric G S, Carter M W. Multi-level resource allocation for HIV prevention: A model for developing countries[J]. European Journal of Operational Research, 2007, 180(2): 786-799.
[4] Du M, Sai A, Kong N. A data-driven optimization approach for multi-period resource allocation in cholera outbreak control[J]. European Journal of Operational Research, 2021, 291(3): 1106-1116.
[5] 蔡全才, 姜庆五, 徐勤丰, 等. 定量评价SARS干预措施效果的传播动力学模型[J]. 中华流行病学杂志, 2005(3): 5-10. Cai Q C, Jiang Q W, Xu Q F, et al. To develop a model on severe acute respiratory syndrome epidemics to quantitatively evaluate the effectiveness of intervention measures[J]. Chinese Journal of Epidemiology, 2005(3): 5-10.
[6] Büyüktahtakİn ş E, des-Bordes E, Kıbış E Y. A new epidemics-logistics model: Insights into controlling the Ebola virus disease in West Africa[J]. European Journal of Operational Research, 2018, 265(3): 1046-1063.
[7] Liu M, Ning J, Du Y R, et al. Modelling the evolution trajectory of COVID-19 in Wuhan, China: Experience and suggestions[J]. Public Health, 2020, 183: 76-80.
[8] 桑茂盛, 丁一, 包铭磊, 等. 基于新冠病毒特征及防控措施的传播动力学模型[J]. 系统工程理论与实践, 2021, 41(1): 124-133. Sang M S, Ding Y, Bao M L, et al. Propagation dynamics model considering the characteristics of 2019-nCoV and prevention-control measurements[J]. Systems Engineering—Theory & Practice, 2021, 41(1): 124-133.
[9] 姜长云, 姜惠宸. 新冠肺炎疫情防控对国家应急管理体系和能力的检视[J]. 管理世界, 2020, 36(8): 8-18. Jiang C Y, Jiang H C. The examination of the prevention and control of COVID-19 epidemic on national emergency management and capacity[J]. Journal of Management World, 2020, 36(8): 8-18.
[10] 欧阳桃花, 郑舒文, 程杨. 构建重大突发公共卫生事件治理体系:基于中国情景的案例研究[J]. 管理世界, 2020, 36(8): 19-32. Ouyang T H, Zheng S W, Cheng Y. The construction of a governance system for large-scale public health emergency: A case study based on the Chinese scenario[J]. Journal of Management World, 2020, 36(8): 19-32.
[11] 祁超, 卢辉, 王红卫, 等. 应急医院工程快速建造及其对疫情防控的作用——以武汉市抗击新冠疫情为例[J]. 管理世界, 2021, 37(6): 189-201. Qi C, Lu H, Wang H W, et al. Rapid construction of emergency hospital project and its impact on epidemic prevention and control: A case of Wuhan fighting against COVID-19[J]. Journal of Management World, 2021, 37(6): 189-201.
[12] 张铮, 李政华. 中国特色应急管理制度体系构建:现实基础、 存在问题与发展策略[J]. 管理世界, 2022, 38(1): 138-144. Zhang Z, Li Z H. Emergency management system construction with Chinese characteristics: Realistic foundation, existing problems and development strategy[J]. Journal of Management World, 2022, 38(1): 138-144.
[13] 白云, 钱箴, 孙玉莹, 等. 基于综合集成预测方法的新冠肺炎疫情预测[J]. 系统工程理论与实践, 2022, 42(6): 1678-1693. Bai Y, Qian Z, Sun Y Y, et al. COVID-19 epidemic forecasting based on a comprehensive ensemble method[J]. Systems Engineering—Theory & Practice, 2022, 42(6): 1678-1693.
[14] 都牧. 数据驱动的疫情检测和医疗资源动态分配的联合决策方法[J/OL]. 中国管理科学: 1-11. [2023-04-17]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2214. Du M. A data-driven decision-making approach for joint mass screening and pharmaceutical resource allocation in epidemic outbreak[J/OL]. Chinese Journal of Management Science: 1-11. [2023-04-17]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2214.
[15] 项寅. 需求不确定下的突发疫情应急医疗设施动态布局[J/OL]. 中国管理科学: 1-12. [2023-04-17]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2432. Xiang Y. Dynamic emergency medical facilities location for epidemics under uncertain demand[J/OL]. Chinese Journal of Management Science: 1-12. [2023-04-17].https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2432.
[16] 刘明, 李颖祖, 曹杰, 等.突发疫情环境下基于服务水平的应急物流网络优化设计[J]. 中国管理科学, 2020, 28(3): 11-20. Liu M, Li Y Z, Cao J, et al. An optimal design of emergency logistics network for epidemic controlling based on service level[J]. Chinese Journal of Management Science, 2020, 28(3): 11-20.
[17] 陈凤娇, 刘德海. 重大传染病多渠道疫情信息发布模式的演化路径分析[J]. 中国管理科学, 2024, 32(4): 237-249. Chen F J, Liu D H. Evolutionary path analysis of multi-channel epidemic information release of major infectious diseases[J]. Chinese Journal of Management Science, 2024, 32(4): 237-249.
[18] Kruse T, Strack P. Optimal dynamic control of an epidemic[J/OL]. Operations Research, 2023. https://doi.org/10.1287/opre.2022.0161.
[19] Pavelka M, Van-Zandvoort K, Abbott S, et al. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia[J]. Science, 2021, 372(6542): 635-641.
[20] Scarselli D, Budanur N B, Timme M, et al. Discontinuous epidemic transition due to limited testing[J]. Nature Communications, 2021, 12(1): 1-6.
[21] Acemoglu D, Makhdoumi A, Malekian A, et al. Testing, voluntary social distancing, and the spread of an infection[J]. Operations Research, 2022, 72(2): 533-548.
[22] Kıbış E Y, Büyüktahtakın İ E. Optimizing invasive species management: A mixed-integer linear programming approach[J]. European Journal of Operational Research, 2017, 259(1): 308-321.
[23] Abdin A F, Fang Y P, Caunhye A, et al. An optimization model for planning testing and control strategies to limit the spread of a pandemic—The case of COVID-19[J]. European Journal of Operational Research, 2023, 304(1): 308-324.
[24] 王聪, 严洁. 百度迁徙规模指数构造方法反演[J]. 电子科技大学学报, 2021, 50(4): 616-626. Wang C, Yan J. An inversion of the constitution of the Baidu migration scale index[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 616-626.
[25] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165-174.
[26] Lauer S A, Grantz K H, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application[J]. Annals of Internal Medicine, 2020, 172(9): 577-582.
[27] Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2)[J]. Science, 2020, 368(6490): 489-493.
[28] Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak[J]. International Journal of Infectious Diseases, 2020, 92: 214-217.
[29] Pullano G, Di Domenico L, Sabbatini C E, et al. Under detection of cases of COVID-19 in France threatens epidemic control[J]. Nature, 2021, 590(7844): 134-139.

基金

国家自然科学基金(72171119);教育部人文社科基金(23YJAZH074);江苏省研究生科研与实践创新计划(KYCX22_0556)
PDF(991 KB)

404

Accesses

0

Citation

Detail

段落导航
相关文章

/