Influence of AI on labor market polarization and countermeasures
HUANG Xu1, DONG Zhiqiang2
Author information+
1. School of Finance and Information, Ningbo University of Finance and Economics, Ningbo 315175, China; 2. School of Economics and Management, South China Normal University, Guangzhou 510004, China
With the decreasing cost of intelligent capital compared to the labor costs of medium-skilled workers, artificial intelligence (AI) is poised to replace jobs in the middle-skilled segment, leading to labor market polarization. This article constructs a dynamic multi-sector general equilibrium model to compare three strategies to cope with this phenomenon: 1) improving the labor productivity of medium-skilled workers, 2) transitioning medium-skilled workers into low-skilled roles, and 3) upskilling medium-skilled workers into high-skilled positions. Findings reveal that all three strategies can mitigate wage polarization, but transforming medium-skilled workers into high-skilled workers can enhance the overall labor force skill level, reduce income inequality, and promote quality employment and shared prosperity. Automation of high (low) skill tasks will decrease the wages and labor income share of high (low) skilled workers, while the creation of high (low) skill tasks will increase their wages and labor income share. The government increasing the proportion of investment in new infrastructure and reducing the proportion of investment in education can increase total social output, but it will intensify wage polarization. The government increasing the proportion of investment in education and reducing the proportion of investment in new infrastructure will help reduce income inequality, but the economic growth effect will not be as good as Invest in new infrastructure.
HUANG Xu
, DONG Zhiqiang. , {{custom_author.name_en}}.
Influence of AI on labor market polarization and countermeasures. Systems Engineering - Theory & Practice, 2024, 44(1): 272-295 https://doi.org/10.12011/SETP2023-0683
[1] 郭凯明. 人工智能发展、产业结构转型升级与劳动收入份额变动[J]. 管理世界, 2019, 35(7):60-77. Guo K M. Development of artificial intelligence, transformation and upgrading of industrial structure and changes in labor share[J]. Journal of Management World, 2019, 35(7):60-77. [2] 郭凯明, 王钰冰, 龚六堂. 劳动供给转变、有为政府作用与人工智能时代开启[J]. 管理世界, 2023, 39(6):1-21. Guo K M, Wang Y B, Gong L T. The transformation of labor supply, the role of effective government, and the opening of the artificial intelligence era[J]. Journal of Management World, 2023, 39(6):1-21. [3] 黄旭, 董志强. 人工智能如何促进高质量发展和就业?[J]. 中央财经大学学报, 2023(11):3-18. Huang X, Dong Z Q. How does artificial intelligence promote high-quality development and employment?[J]. Journal of Central University of Finance and Economics, 2023(11):3-18. [4] 杜善重, 李卓, 马连福. 机器人应用如何影响企业技术创新——来自中国制造业上市公司的经验证据[J]. 系统工程理论与实践, 2023, 45(12):1-20. Du S Z, Li Z, Ma L F. How robot applications affect enterprise technological innovation:Empirical evidence from Chinese manufacturing listed companies[J]. Systems Engineering——Theory & Practice, 2023, 45(12):1-20. [5] 陈东, 秦子洋. 人工智能与包容性增长——来自全球工业机器人使用的证据[J]. 经济研究, 2022, 57(4):85-102. Chen D, Qin Z Y. Artificial intelligence and inclusive growth:Evidence from global industrial robot use[J]. Economic Research, 2022, 57(4):85-102. [6] 程文. 人工智能、索洛悖论与高质量发展:通用目的技术扩散的视角[J]. 经济研究, 2021, 56(10):22-38. Cheng W. Artificial intelligence, Solow paradox, and high-quality development:A perspective of universal purpose technology diffusion[J]. Economic Research, 2021, 56(10):22-38. [7] 孔祥维, 唐鑫泽, 王子明. 人工智能决策可解释性的研究综述[J]. 系统工程理论与实践, 2021, 41(2):524-536. Kong X W, Tang X Z, Wang Z M. A review of research on the interpretability of artificial intelligence decision-making[J]. Systems Engineering——Theory & Practice, 2021, 41(2):524-536. [8] 孙早, 侯玉琳. 工业智能化如何重塑劳动力就业结构[J]. 中国工业经济, 2019(5):61-79. Sun Z, Hou Y L. How to reshape the employment structure of labor force through industrial intelligence[J]. China Industrial Economy, 2019(5):61-79. [9] Acemoglu D, Restrepo P. Artificial intelligence, automation, and work[M]//The economics of artificial intelligence:An agenda. Chicago:University of Chicago Press, 2018:197-236. [10] 黄旭. 人工智能技术发展背景下收入不平等及政策:理论分析[J]. 中央财经大学学报, 2021(7):83-91. Huang X. Income inequality and policies in the context of AI technology development:Theoretical analysis[J]. Journal of Central University of Finance and Economics, 2021(7):83-91. [11] Acemoglu D, Autor D. Skills, tasks and technologies:Implications for employment and earnings[M]//Handbook of Labor Economics. Elsevier, 2011, 356(4):1043-1171. [12] 汪前元, 魏守道, 金山,等. 工业智能化的就业效应研究——基于劳动者技能和性别的空间计量分析[J]. 管理世界, 2022, 38(10):110-126. Wang Q Y, Wei S D, Jin S, et al. Research on the employment effect of industrial intelligence:A spatial econometric analysis based on worker skills and gender[J]. Journal of Management World, 2022, 38(10):110-126. [13] 尹志锋, 曹爱家, 郭家宝,等. 基于专利数据的人工智能就业效应研究——来自中关村企业的微观证据[J]. 中国工业经济, 2023(5):137-154. Yin Z F, Cao A J, Guo J B, et al. Research on the employment effect of artificial intelligence based on patent data:Micro evidence from Zhongguancun Enterprises[J]. China Industrial Economy, 2023(5):137-154. [14] Frey C B, Osborne M A. The future of employment:How susceptible are jobs to computerisation?[J]. Technological Forecasting and Social Change, 2017, 114(2):254-280. [15] Acemoglu D, Restrepo P. Robots and jobs:Evidence from US labor markets[J]. Journal of Political Economy, 2020, 128(6):2188-2244. [16] 闫雪凌, 朱博楷, 马超. 工业机器人使用与制造业就业:来自中国的证据[J]. 统计研究, 2020, 37(1):74-87. Yan X L, Zhu B K, Ma C. The use of industrial robots and manufacturing employment:Evidence from China[J]. Statistical Research, 2020, 37(1):74-87. [17] 王永钦, 董雯. 机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J]. 经济研究, 2020, 55(10):159-175. Wang Y Q, Dong W. How does the rise of robots affect China's labor market——Evidence from listed companies in the manufacturing industry[J]. Economic Research, 2020, 55(10):159-175. [18] 李舒沁, 王灏晨, 汪寿阳. 人工智能背景下工业机器人发展水平综合动态评价研究——以制造业为例[J]. 系统工程理论与实践, 2020, 40(11):2958-2967. Li S Q, Wang H C, Wang S Y. Comprehensive dynamic evaluation of the development level of industrial robots under the background of artificial intelligence:A case study of manufacturing industry[J]. Systems Engineering——Theory & Practice, 2020, 40(11):2958-2967. [19] 董志强, 黄旭. 人工智能技术发展背景下的失业及政策:理论分析[J]. 社会科学战线, 2019(12):76-84. Dong Z Q, Huang X. Unemployment and policy in the context of artificial intelligence technology development:Theoretical analysis[J]. Social Science Front, 2019(12):76-84. [20] 王林辉, 钱圆圆, 宋冬林,等. 机器人应用的岗位转换效应及就业敏感性群体特征——来自微观个体层面的经验证据[J]. 经济研究, 2023, 58(7):69-85. Wang L H, Qian Y Y, Song D L, et al. The job transfer effect and employment sensitivity group characteristics of robot applications:Empirical evidence from micro individual level[J]. Economic Research, 2023, 58(7):69-85. [21] 黄旭, 许文立. 公共政策如何应对人工智能引发的失业风险?[J]. 中央财经大学学报, 2022(10):71-84. Huang X, Xu W L. How can public policies respond to the risk of unemployment caused by artificial intelligence?[J] Journal of Central University of Finance and Economics, 2022(10):71-84. [22] Prettner K, Strulik H. Innovation, automation, and inequality:Policy challenges in the race against the machine[J]. Journal of Monetary Economics, 2020, 116(3):249-265. [23] 杨飞, 范从来. 产业智能化是否有利于中国益贫式发展?[J]. 经济研究, 2020, 55(5):150-165. Yang F, Fan C L. Is industrial intelligence beneficial for China's poverty alleviation development?[J] Economic Research, 2020, 55(5):150-165. [24] 张云, 柏培文. 数智化如何影响双循环参与度与收入差距——基于省级-行业层面数据[J]. 管理世界, 2023, 39(10):58-83. Zhang Y, Bai P W. How digitalization affects double circulation participation and income gap:Based on provincial industry level data[J]. Journal of Management World, 2023, 39(10):58-83. [25] Hemous D, Olsen M. The rise of the machines:Automation, horizontal innovation, and income inequality[J]. American Economic Journal:Macroeconomics, 2022, 14(1):179-223. [26] Acemoglu D, Restrepo P. The race between man and machine:Implications of technology for growth, factor shares, and employment[J]. American Economic Review, 2018, 108(6):1488-1542. [27] Acemoglu D, Loebbing J. Automation and polarization[R]. NBER Working Paper, 2022. [28] 王林辉, 胡晟明, 董直庆. 人工智能技术会诱致劳动收入不平等吗——模型推演与分类评估[J]. 中国工业经济, 2020(4):97-115. Wang L H, Hu S M, Dong Z Q. Will artificial intelligence technology induce labor income inequality——Model deduction and classification evaluation[J]. China Industrial Economy, 2020(4):97-115 [29] Autor D H, Dorn D. The growth of low-skill service jobs and the polarization of the US labor market[J]. American Economic Review, 2013, 103(5):1553-1597. [30] 郑世林, 姚守宇, 王春峰. ChatGPT新一代人工智能技术发展的经济和社会影响[J]. 产业经济评论, 2023(3):5-21. Zheng S L, Yao S Y, Wang C F. The economic and social impact of the development of the new generation artificial intelligence technology in ChatGPT[J]. Industrial Economic Review, 2023(3):5-21 [31] Stokel-Walker C, Van Noorden R. What ChatGPT and generative AI mean for science[J]. Nature, 2023, 614(7947):214-216. [32] Milanovic B. Global inequality of opportunity:How much of our income is determined by where we live?[J]. Review of Economics and Statistics, 2015, 97(2):452-460. [33] 汤璨, 孙文凯, 赵忠. 技术变革、流动人口就业结构与收入极化趋势[J]. 学术研究, 2021, 210(3):80-85. Tang C, Sun W K, Zhao Z. Technological change, employment structure of floating population, and income polarization trends[J]. Academic Research, 2021, 210(3):80-85. [34] Feng A, Graetz G. Training requirements, automation, and job polarisation[J]. The Economic Journal, 2020, 130(631):2249-2271. [35] Fierro L E, Caiani A, Russo A. Automation, job polarisation, and structural change[J]. Journal of Economic Behavior & Organization, 2022, 200:499-535. [36] 陈彦斌, 林晨, 陈小亮. 人工智能、老龄化与经济增长[J]. 经济研究, 2019, 54(7):47-63. Chen Y B, Lin C, Chen X L. Artificial intelligence, aging, and economic growth[J]. Economic Research, 2019, 54(7):47-63. [37] 董志强, 黄旭. 人工智能发展背景下公共政策的增长和不平等效应——一个动态一般均衡模型[J]. 学术研究, 2021(2):92-99. Dong Z Q, Huang X. The growth and inequality effects of public policies in the context of artificial intelligence development:A dynamic general equilibrium model[J]. Academic Research, 2021(2):92-99.