城市创新效率对不动产投资结构的影响研究

王荣, 赵华平, 张所地

系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (2) : 529-545.

PDF(644 KB)
PDF(644 KB)
系统工程理论与实践 ›› 2024, Vol. 44 ›› Issue (2) : 529-545. DOI: 10.12011/SETP2022-2015
论文

城市创新效率对不动产投资结构的影响研究

    王荣, 赵华平, 张所地
作者信息 +

Research on the impact of urban innovation efficiency on real estate investment structure

    WANG Rong, ZHAO Huaping, ZHANG Suodi
Author information +
文章历史 +

摘要

本文选取2008--2020年中国地级以上城市的面板数据,通过基于数据包络分析的FP (Fare-Primont)指数法测度了城市的创新效率,运用面板双固定效应模型和工具变量法,实证检验了城市的创新效率对不动产投资结构的影响效应;通过构建的住宅-非住宅不动产投资的非线性动态系统模型,分析了不同创新效率城市不动产投资结构的稳定性.检验结果表明:城市当期与上一期的创新效率均会显著促进非住宅不动产投资比重,并呈非线性作用模式.在不同创新效率城市中,不动产投资结构都存在稳定值,且高创新效率城市的稳定值>中创新效率城市的稳定值>低创新效率城市的稳定值.因此,当地政府应结合城市的创新发展定位,合理运用调控政策,促进不动产市场的健康发展;同时,还应根据城市创新效率水平变化和城市间创新效率差异,因时制宜、因城施策,调整不动产投资结构.

Abstract

This paper selects the panel data of cities above prefecture level in China from 2008 to 2020, and measures the innovation efficiency of cities using the FP (Fare-Primont) index method based on data envelopment analysis. Using the panel double fixed effects model and instrumental variable method, this paper empirically tests the impact effect of urban innovation efficiency on real estate investment structure; By constructing a nonlinear dynamic system model for residential and non-residential real estate investment, the stability of urban real estate investment structures with different innovation efficiencies was analyzed. The test results indicate that the innovation efficiency of both the current and previous periods in the city will significantly promote the proportion of non-residential real estate investment, and exhibit a non-linear effect pattern. In different innovation efficiency cities, the real estate investment structure has stable values, and the stable value of high innovation efficiency cities is higher than that of medium innovation efficiency cities and lower innovation efficiency cities. Therefore, local governments should combine the positioning of urban innovation and development, reasonably apply regulatory policies, and promote the healthy development of the real estate market; At the same time, it is also necessary to adjust the real estate investment structure according to changes in urban innovation efficiency levels and differences in innovation efficiency between cities, and implement policies tailored to the times and cities.

关键词

不动产投资结构 / 创新效率 / 非线性动态系统 / 稳定比重

Key words

real estate investment structure / innovation efficiency / nonlinear dynamic system / stable proportion

引用本文

导出引用
王荣 , 赵华平 , 张所地. 城市创新效率对不动产投资结构的影响研究. 系统工程理论与实践, 2024, 44(2): 529-545 https://doi.org/10.12011/SETP2022-2015
WANG Rong , ZHAO Huaping , ZHANG Suodi. Research on the impact of urban innovation efficiency on real estate investment structure. Systems Engineering - Theory & Practice, 2024, 44(2): 529-545 https://doi.org/10.12011/SETP2022-2015
中图分类号: F293.3   

参考文献

[1] 杨赞, 杨鸿杰. 房地产市场对于企业R&D的投资影响研究[J]. 科研管理, 2022, 43(1): 153-160.Yang Z, Yang H J. The influence of real estate market on enterprise R&D investment[J]. Science Research Management, 2022, 43(1): 153-160.
[2] 王文春, 荣昭. 房价上涨对工业企业创新的抑制影响研究[J]. 经济学(季刊), 2014, 13(2): 465-490.Wang W C, Rong Z. Housing boom and firm innovation: Evidence from industrial firms in China[J]. China Economic Quarterly, 2014, 13(2): 465-490.
[3] 张宝林, 秦涛, 岳明柯,等. 住宅投资、 要素结构与配置效率——基于北京市各区县的实证研究[J]. 中国土地科学, 2020, 34(1): 44-52.Zhang B L, Qin T, Yue M K, et al. Housing investment, factors structure and allocative efficiency: An empirical study on the counties in Beijing City[J]. China Land Science, 2020, 34(1): 44-52.
[4] 张超, 张意博, 魏学辉, 等. 高房价对区域创新的抑制效应及其空间分异研究[J]. 研究与发展管理, 2020, 32(6): 103-113.Zhang C, Zhang Y B, Wei X H, et al. Inhibition effect of high housing price on regional innovation and its spatial differentiation[J]. R&D Management, 2020, 32(6): 103-113.
[5] 余泳泽, 张少辉. 城市房价、 限购政策与技术创新[J]. 中国工业经济, 2017(6): 98-116.Yu Y Z, Zhang S H. Urban housing prices, purchase restriction policy and technological innovation[J]. China Industrial Economics, 2017(6): 98-116.
[6] 杜聪, 王峤, 刘修岩. 住房供给约束、 产业生命周期与创新分散化[J]. 科研管理, 2020, 41(7): 110-119.Du C, Wang Q, Liu X Y. Housing supply constraints, industrial life cycle and innovation deagglomeration[J]. Science Research Management, 2020, 41(7): 110-119.
[7] 李昊洋, 程小可, 高升好. 高房价"驱逐"了公司的研发活动吗? ——来自创业板的经验证据[J]. 中国软科学, 2018(12): 95-109.Li H Y, Cheng X K, Gao S H. Does real estate price bubble drive outa company's R&D activity? — The evidence from GEM company[J]. China Soft Science, 2018(12): 95-109.
[8] 范子英, 程可为, 冯晨. 用地价格管制与企业研发创新: 来自群聚识别的证据[J]. 管理世界, 2022, 38(8): 156-178.Fan Z Y, Cheng K W, Feng C. The land price control and firm's R&D innovation: Evidence from bunching identification[J]. Journal of Management World, 2022, 38(8): 156-178.
[9] 王博, 张耀宇, 冯淑怡. 地方政府干预、 土地价格扭曲与工业企业生产率[J]. 经济理论与经济管理, 2021, 41(7): 51-63.Wang B, Zhang Y Y, Feng S Y. Local government intervention, land price distortion and industrial enterprise productivity[J]. Economic Theory and Business Management, 2021, 41(7): 51-63.
[10] 何增华, 随淑敏, 王京雷. 房价对企业创新的影响——基于创新投入与人才政策视角[J]. 科学学研究, 2022, 40(12): 2281-2293.He Z H, Sui S M, Wang J L. The effect of housing price on enterprise innovation — From the perspective of innovation investment and talent policy[J]. Studies in Science of Science, 2022, 40(12): 2281-2293.
[11] Chaney T, Sraer D, Thesmar D. The collateral channel: How real estate shocks affect corporate investment[J]. American Economic Review, 2012, 102(6): 2381-2409.
[12] Adelino M, Schoar A, Severino F. House prices, collateral and self-employment[J]. Journal of Financial Economics, 2015, 117(2): 288-306.
[13] 刘建江, 石大千. 高房价对企业创新的影响:是挤出还是挤入? ——基于双边随机前沿模型的测算[J]. 中国软科学, 2019(9): 150-165.Liu J J, Shi D Q. High housing prices and enterprise innovation: Crowding in or crowding out? — Measurement and calculation based on bilateral stochastic frontier model[J]. China Soft Science, 2019(9): 150-165.
[14] 赵华平, 侯碧瑶, 张所地. 不动产供给数量结构对城市创新产出的加速效应研究[J]. 云南财经大学学报, 2020, 36(9): 18-30.Zhao H P, Hou B Y, Zhang S D. Research on the acceleration effect of the quantity structure of real estate supply on urban innovation output[J]. Journal of Yunnan University of Finance and Economics, 2020, 36(9): 18-30.
[15] 张所地, 张婷婷, 赵华平, 等. 城市不动产投资结构对科技人才集聚的门限效应[J]. 科学学研究, 2020, 38(8): 1408-1416.Zhang S D, Zhang T T, Zhao H P, et al. Threshold effect of urban real estate investment structure on the agglomeration of scientific and technological talent[J]. Studies in Science of Science, 2020, 38(8): 1408-1416.
[16] 孙红军, 张路娜, 王胜光. 科技人才集聚、 空间溢出与区域技术创新—— 基于空间杜宾模型的偏微分方法[J]. 科学学与科学技术管理, 2019, 40(12): 58-69.Sun H J, Zhang L N, Wang S G. Technological talent agglomeration, spatial spillover and regional technological innovation — Based on spatial durbin model partial differential method[J]. Science of Science and Management of S.&T., 2019, 40(12): 58-69.
[17] 裴玲玲. 科技人才集聚与高技术产业发展的互动关系[J]. 科学学研究, 2018, 36(5): 813-824.Pei L L. Interactive relationships between talents agglomeration and high-tech industry development[J]. Studies in Science of Science, 2018, 36(5): 813-824.
[18] 王春杰, 黄金升, 邹伟. 选择性供地、 工业结构调整与城市创新[J]. 中国土地科学, 2021, 35(9): 24-32.Wang C J, Huang J S, Zou W. Selective land supply, industrial structure adjustment and urban innovation[J]. China Land Science, 2021, 35(9): 24-32.
[19] 韩峰, 袁香钰, 尹靖华. 地方政府"两手"供地与企业创新——基于土地市场交易数据和企业微观数据的实证分析[J]. 经济理论与经济管理, 2022, 42(11): 74-96.Han F, Yuan X Y, Yin J H. Local government's "Two Hands" land supply policy and corporate innovation[J]. Economic Theory and Business Management, 2022, 42(11): 74-96.
[20] 安勇, 赵丽霞. 土地资源错配、 空间策略互动与城市创新能力[J]. 中国土地科学, 2021, 35(4): 17-25.An Y, Zhao L X. Land resource misallocation, spatial strategy interaction and urban innovation capability[J]. China Land Science, 2021, 35(4): 17-25.
[21] 彭山桂, 孙昊, 郭正宁,等. 土地资源空间错配对城市产业转型升级的影响及作用机制[J]. 资源科学, 2022, 44(5): 871-885.Peng S G, Sun H, Guo Z N, et al. Impact mechanism of land resources spatial mismatch on urban industrial transformation and upgrading[J]. Resources Science, 2022, 44(5): 871-885.
[22] 张所地, 程小燕. 城市创新性特质对房价分化影响的实证研究[J]. 数理统计与管理, 2019, 38(1): 105-114.Zhang S D, Cheng X Y. An empirical study on the impact of urban innovation on housing price differentiation[J]. Journal of Applied Statistics and Management, 2019, 38(1): 105-114.
[23] 范新英, 张所地. 城市创新效率测度及其对房价分化影响的实证研究[J]. 数理统计与管理, 2018, 37(1): 135-145.Fan X Y, Zhang S D. The measurement of urban innovation efficiency and its impact on the differentiation of housing prices[J]. Journal of Applied Statistics and Management, 2018, 37(1): 135-145.
[24] 王荣, 张所地. 城市创新能力对商品房房价的影响分析[J]. 上海经济研究, 2016(12): 113-119.Wang R, Zhang S D. The effect of urban innovation ability on commercial housing price[J]. Shanghai Journal of Economics, 2016(12): 113-119.
[25] Malpezzi S. The Wisconsin program in real estate and urban land economics: A century of tradition and innovation[M]. Madison: The Department of Real Estate and Urban Land Economics & The James A. Graaskamp Center for Real Estate, 2009.
[26] 陈丹玲, 卢新海, 张超正,等. 组态视角下协同创新驱动城市土地绿色利用效率提升的路径选择[J]. 中国人口·资源与环境, 2022, 32(10): 103-111.Chen D L, Lu X H, Zhang C Z, et al. Path selection of improving urban land green use efficiency driven by collaborative innovation from the perspective of configuration[J]. China Population, Resources and Environment, 2022, 32(10): 103-111.
[27] 张瑞, 文兰娇, 王宁柯,等. 科技创新对城市土地绿色利用效率的影响——以武汉都市圈48个区县为例[J]. 资源科学, 2023, 45(2): 264-280.Zhang R, Wen L J, Wang N K, et al. Impact of scientific and technological innovation on green use efficiency of urban land: A case study of 48 districts and counties in the Wuhan metropolitan area[J]. Resources Science, 2023, 45(2): 264-280.
[28] 程小燕, 张所地. 创新城区不动产空间结构特征及优化路径[J]. 城市发展研究, 2019, 26(2): 9-13.Cheng X Y, Zhang S D. A study on the characteristics and optimizing paths of innovation urban real estate spatial structure[J]. Urban Development Studies, 2019, 26(2): 9-13.
[29] 孔庆山, 缪斯林, 杨蕙馨,等. 中国城市房地产供给结构研究[J]. 系统工程理论与实践, 2020, 40(7): 1671-1681. Kong Q S, Miao S L, Yang H X, et al. The evaluation of urban real estate supply structure in China[J]. Systems Engineering — Theory & Practice, 2020, 40(7): 1671-1681.
[30] 王健. 创新启示录: 超越性思维[M]. 上海: 复旦大学出版社, 2005. Wang J. Innovation revelation: Transcendental thinking[M]. Shanghai: Fudan University Press, 2005.
[31] 唐迩丹. 西部老工业城市转型升级中的人才政策质量研究[D]. 成都: 四川大学, 2020. Tang E D. Research on talent policy quality under the background of transformation and upgrading of old industrial cities in western China[D]. Chengdu: Sichuan University, 2020.
[32] 张骥. 地方品质与经济地理[D]. 北京: 北京大学, 2019. Zhang J. Local quality and economic geography[D]. Beijing: Peking University, 2019.
[33] Langelland O. Financing innovation: The role of norwegian venture capitalists in financing knowledge-intensive enterprises[J]. European Planning Studies, 2007, 15(9): 1143-1161.
[34] O'Donnell C J. Econometric estimation of distance functions and associated measures of productivity and efficiency change[J]. Journal of Productivity Analysis, 2014, 41(2): 187-200.
[35] 王猛, 宣烨, 陈启斐. 创意阶层集聚、 知识外部性与城市创新——来自20个大城市的证据[J]. 经济理论与经济管理, 2016(1): 59-70.Wang M, Xuan Y, Chen Q F. Creative class agglomeration, knowledge externalities and urban innovation — Evidence from 20 large cities[J]. Economic Theory and Business Management, 2016(1): 59-70.
[36] 吴昌南, 张云. "大学扩招"对大学创新效率的影响——基于省级层面的双重差分的分析[J]. 科研管理, 2020, 41(8): 258-267.Wu C N, Zhang Y. Influence of "University Enrollment Expansion" on university innovation efficiency in China — A DID analysis based on provincial panel data[J]. Science Research Management, 2020, 41(8): 258-267.
[37] 陈斌开, 张川川. 人力资本和中国城市住房价格[J]. 中国社会科学, 2016(5): 43-64.Chen B K, Zhang C C. Human capital and housing prices in Chinese cities[J]. Social Sciences in China, 2016(5): 43-64.
[38] 张斌, 沈能. 集聚外部性、 异质性技术和区域创新效率[J]. 科研管理, 2020, 41(8): 49-59.Zhang B, Shen N. Agglomeration externalities, heterogeneous technology and regional innovation efficiency[J]. Science Research Management, 2020, 41(8): 49-59.
[39] 张传勇, 刘学良. 高校扩招对房价上涨的影响研究[J]. 中国人口科学, 2014(6): 107-118.Zhang C Y, Liu X L. Expanding college enrolment v.s. rising house prices[J]. Chinese Journal of Population Science, 2014(6): 107-118.
[40] Arellano M, Bond S. Some tests of specification for panel data: Monte carlo evidence and an application to employment equations[J]. Review of Economic Studies, 1991, 58: 277-297.
[41] 赵果庆. 我国民族企业出口与FDI企业出口关系——基于非线性动态系统实证分析[J]. 系统工程理论与实践, 2007, 27(1): 68-76.Zhao G Q. Empirical analysis of the relation between nation-invested enterprises exports and foreign-invested enterprises exports in China based on nonlinear dynamical system[J]. Systems Engineering — Theory & Practice, 2007, 27(1): 68-76.
[42] 魏军. 中国银行业与保险业融合发展机理与路径优化研究[D]. 北京: 北京交通大学, 2021.Wei J. Research on the integrated development mechanism and path optimization of China's banking and insurance industry[D]. Beijing: Beijing Jiao Tong University, 2021.
[43] 刘晓宇,辛良杰. 2007-2019年中国城市土地价格的空间分化[J]. 地理研究, 2022, 41(6): 1637-1651.Liu X Y, Xin L J. Spatial divergence of urban land prices in China from 2007 to 2019[J]. Geographical Research, 2022, 41(6): 1637-1651.

基金

国家社科基金年度一般项目(20BJY068); 山西省科技战略研究专项(202204031401090)
PDF(644 KB)

312

Accesses

0

Citation

Detail

段落导航
相关文章

/