金融市场和航运市场是现代全球经济的两个重要组成部分, 分别反映了资金流和物流的资源配置. 本研究聚焦干散货、油轮和集装箱三大航运子市场, 以全球前9大航运公司对应的国家股票指数和美元汇率代表金融市场, 通过MVMQ-CAViaR模型刻画航运市场和金融市场之间的极端风险双向溢出效应. 引入全球经济政策不确定性, 通过DCC-MIDAS-CoVaR模型揭示经济政策不确定性对航运市场与金融市场长记忆联动性的风险传导机制, 为掌握跨市场风险扩散规律、及时采取政策干预阻断跨市场风险传染提供理论依据. 研究结果表明: 金融市场对航运市场的极端风险溢出比航运市场对金融市场的极端风险溢出更强, 经济政策不确定性对航运市场与金融市场长记忆联动性的下行风险溢出比上行风险溢出更强, 股指市场比美元汇率市场的风险溢出更强. 经济政策不确定性对航运市场与美国、中国、新加坡、瑞士及丹麦金融市场长记忆联动性的上行和下行风险溢出均较强, 这揭示了一个事实, 同时具备金融中心和航运大国特征的国家金融市场与航运市场的长记忆联动性更容易受到全球经济政策不确定性的影响.
Abstract
Financial market and shipping market are two important components of modern global economy, which respectively reflect the resource allocation of capital flow and logistics. This study focuses on the three major shipping sub markets of dry bulk cargo, oil tankers and containers. The financial market is represented by the national stock index and dollar exchange rate corresponding to the world's top nine shipping companies. The MVMQ-CAViaR model is used to characterize the extreme risk two-way spillover effect between the shipping market and the financial market. By introducing the uncertainty of global economic policy, the DCC-MIDAS-CoVaR model is used to reveal the risk transmission mechanism of economic policy uncertainty on shipping market and financial market, which provides a theoretical basis for grasping the law of cross market risk diffusion and timely taking policy intervention to block cross market risk transmission. The results show that, the extreme risk spillover from financial market to shipping market is stronger than that from shipping market to financial market, EPU has stronger downside risk spillover than upward risk spillover for shipping market and financial market. EPU has strong upward and downward risk spillovers on the shipping market and the financial markets of the United States, China, Singapore, Switzerland and Denmark, which reveals the fact that countries with the characteristics of financial center and shipping power are more susceptible to the influence of global economic policy uncertainties in the long-memory correlation between financial market and shipping market.
关键词
经济政策不确定性 /
航运市场 /
金融市场 /
DCC-MIDAS-CoVaR模型
{{custom_keyword}} /
Key words
economic policy uncertainty /
shipping market /
financial market /
DCC-MIDAS-CoVaR model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱莉, 陈占寿, 刘向丽, 等. 沪深300股指期现货市场时变信息溢出因果检验——基于时变DCC-GARCH-Hong 方法和LRSM断点检验[J]. 系统科学与数学, 2020, 40(11): 1901-1917.Zhu L, Chen Z S, Liu X L, et al. Causality test of time-varying information spillover in HS300 stock index futures-spot market-Based DCC-GARCH-Hong method and LRSM breakpoint test[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 1901-1917.
[2] 李红权, 周亮. 系统性金融风险的测度指标及其经济预测能力[J]. 计量经济学报, 2021, 1(4): 892-903.Li H Q, Zhou L. Systemic fnancial risk measurement and its economic forecasting ability[J]. China Journal of Econometrics, 2021, 1(4): 892-903.
[3] Kilian L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market[J]. American Economic Review, 2009, 99(3): 1053-1069.
[4] Awartani B, Maghyereh A I. Dynamic spillovers between oil and stock markets in the gulf cooperation council countries[J]. Energy Economics, 2013, 36: 28-42.
[5] Alizadeh A H, Talley W K. Microeconomic determinants of dry bulk shipping freight rates and contract times[J]. Transportation, 2011, 38(3): 561-579.
[6] Stopford M. Maritime Economics[M]. 3nd Edition. London: Routledge, 2009.
[7] Papapostolou N C, Pouliasis P K, Nomikos N K. Shipping investor sentiment and international stock return predictability[J]. Transportation Research Part E, 2016, 96: 81-94.
[8] 隋聪, 赵越, 孙晓倩, 等. 航运与大宗商品的跨市场影响——来自铁矿石及其航线的证据[J]. 系统工程理论与实践, 2022, 42(3): 713-723.Sui C, Zhao Y, Sun X Q, et al. Cross-market impacts of shipping and bulk commodities-The evidence from iron ore and its routes[J]. Systems Engineering-Theory & Practice, 2022, 42(3): 713-723.
[9] Alizadeh A H, Muradoglu G. Stock market efficiency and international shipping-market information[J]. Journal of International Financial Markets Institutions & Money, 2014, 33(11): 445-461.
[10] Warell L. An analysis of iron ore prices during the latest commodity boom[J]. Mineral Economics, 2018, 31(1-2): 203-216.
[11] Lin A J, Chang H Y, Hsiao J L. Does the baltic dry index drive volatility spillovers in the commodities, currency, or stock markets[J]. Transportation Research Part E, 2019, 127: 265-283.
[12] Baker S R, Bloom N, Davis S J. Measuring economic policy uncertainty[J]. The Quarterly Journal of Economics, 2016, 131(4): 1593-1636.
[13] Alexandridis G, Kavussanos M G, Kim C Y. A survey of shipping finance research: Setting the future research agenda[J]. Transportation Research Part E, 2018, 115: 164-212.
[14] Han L Y, Wan L, Xu Y. Can the Baltic Dry Index predict foreign exchange rates?[J]. Finance Research Letters, 2020, 32: 101157.
[15] 沈德华, 孔祥禹. 经济政策不确定性的动态交叉相关分析——基于美国和英国证券市场的实证研究[J]. 系统科学与数学, 2020, 40(4): 701-713.Shen D H, Kong X Y. Dynamic cross-correlations analysis on economic policy uncertainty: Evidence from US and UK stock markets[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(4): 701-713.
[16] 钟婉玲, 李海奇, 杨胜刚. 国际油价、宏观经济变量与中国股市的尾部风险溢出效应研究[J]. 中国管理科学, 2022, 30(2): 27-37.Zhong W L, Li H Q, Yang S G. Tail risk spillover effects among crude oil price, macroeconomic variables and China's stock market[J]. Chinese Journal of Management Science, 2022, 30(2): 27-37.
[17] 朱宏泉, 刘晓倩, 李亚静. 经济政策不确定性对A股IPO 抑价的影响研究[J]. 系统工程理论与实践, 2021, 41(5): 1197-1210.Zhu H Q, Liu X Q, Li Y J. The influence of economic policy uncertainty on IPO underpricing in Chinese A-share market[J]. Systems Engineering-Theory & Practice, 2021, 41(5): 1197-1210.
[18] 陈宇峰, 朱志韬, 屈放. 国际油价、人民币汇率与国内金价的非对称溢出及动态传导机制——基于三元VAR-Asymmetric BEKK (DCC)-GARCH (1,1)模型[J]. 系统科学与数学, 2021, 41(2): 449-465.Chen Y F, Zhu Z T, Qu F. Asymmetric spillover effect and dynamic correlation between crude oil, RMB exchange rate and Chinese gold price: based on VAR-Asymmetric BEKK (DCC)-GARCH (1, 1) Model[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(2): 449-465.
[19] 李正辉, 钟俊豪, 董浩. 经济政策不确定性宏观金融效应的统计测度研究[J]. 系统工程理论与实践, 2021, 41(8): 1897-1910.Li Z H, Zhong J H, Dong H. A statistical measurement of the macro-financial effects of economic policy uncertainty[J]. Systems Engineering-Theory & Practice, 2021, 41(8): 1897-1910.
[20] 吴鑫育, 谢海滨, 马超群. 经济政策不确定性与人民币汇率波动率——基于CARR-MIDAS模型的实证研究[J/OL]. 中国管理科学: 1-14[2023-07-24]. doi: 10.16381/j.cnki.issn1003-207x.2021.1654.Wu X Y, Xie H B, Ma C Q. Economic policy uncertainty and renminbi exchange rate volatility: Evidence from CARR-MIDAS model[J/OL]. Chinese Journal of Management Science: 1-14[2023-07-24].doi: 10.16381/j.cnki.issn1003-207x.2021.1654.
[21] Gong Y T, Li K X, Chen S L, et al. Contagion risk between the shipping freight and stock markets: Evidence from the recent US-China trade war[J]. Transportation Research Part E, 2020, 136: 101900.
[22] 孟斌, 廉荣文隽, 隋聪, 等. 重大事件是否影响了航运市场溢出传递的稳定性[J/OL].中国管理科学: 1-14[2023-07-24]. doi: 10.16381/j.cnki.issn1003-207x.2021.0250. Meng B, Lian R W J, Sui C, et al. Do major events affect the stability of shipping market spillover and transmission?[J/OL]. 中国管理科学: 1-14[2023-07-24]. doi: 10.16381/j.cnki.issn1003-207x.2021.0250.
[23] Halbert W, Tae-Hwan K, Simone M. VAR for VaR: Measuring tail dependence using multivariate regression quantiles[J]. Journal of Econometrics, 2015, 187(1): 169-188.
[24] Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business & Economic Statistics, 2004, 22(4): 367-381.
[25] Colacito R, Engle R F, Ghysels E. A component model for dynamic correlations[J]. Journal of Econometrics, 2011, 164(1): 45-59.
[26] Adrian T, Brunnermeier M K. COVAR[J]. American Economic Review, 2016, 106(7): 1705-1741.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(71831002, 72174035, 72072018, 71971034); 高等学校学科创新引智"111"计划 (B20082); 辽宁省"兴辽英才计划" (XLYC2008030); 中国博士后科学基金第14 批特别资助(站中)项目(2021T140081)
{{custom_fund}}