基于系统动力学的碳市场风险模拟与调控研究

朱帮助, 唐隽捷, 江民星, 王平

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (7) : 1859-1872.

PDF(1082 KB)
PDF(1082 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (7) : 1859-1872. DOI: 10.12011/SETP2021-2504
论文

基于系统动力学的碳市场风险模拟与调控研究

    朱帮助1, 唐隽捷2, 江民星3, 王平4
作者信息 +

Simulation and regulation of carbon market risk based on system dynamics

    ZHU Bangzhu1, TANG Junjie2, JIANG Minxing3, WANG Ping4
Author information +
文章历史 +

摘要

定量模拟评估碳市场风险,将为制定和完善风险调控措施提供科学支撑,实现碳市场持续稳定发展.本文基于系统动力学构建能刻画碳市场关键风险因素间作用关系的系统动力学模型,多情景模拟评估上海碳市场风险,考察不同调控情景下碳市场风险水平及相关因素的动态变化,科学回答了风险调控中"调控什么"与"如何调控"两个关键科学问题.结果表明:针对成立初期的碳市场,风险偏好弱的市场监管者能更好地抑制风险;相比基准情景,调控情景中能有效降低风险模拟值及其年均变化率的措施作为调控时的首选;风险水平是否超过风险容忍度是调控与否的依据;适当增加配额总量、提高免费配额比例和降低惩罚力度有助于当前碳市场风险调控,兼顾经济与环境效益.最后,本文提出针对性的政策启示,为我国碳市场风险调控措施制定和完善提供决策支持.

Abstract

A quantitative simulation and valuation on carbon market risk provides some scientific insights for the risk regulation policy, which will support an effective and sustainable management of carbon market. In this study, we introduce system dynamics into capturing the relationships among key risk factors of carbon markets. Taking Shanghai carbon market as an example, we use scenario simulations to examine the dynamic changes of risk levels and related factors under different control scenarios, so as to answer the key issues of "what to control" and "how to control" with respect to risk regulation. The results show that the authority with weak risk preference tends to keep lower risk in the early carbon market. It is the best policy spectrum in which both simulation risk and its average annual change rate decrease in the regulatory scenarios comparing to the baseline scenarios. The risk tolerance can be a reference index for activating or deactivating the risk regulation. Appropriately increasing the total quota, increasing the proportion of free quota and reducing the punishment facilitate to regulate the current carbon market risk and keep the economic development and environmental benefits as well. The policy implications are proposed to support for China carbon market risk regulation policy making and improvement.

关键词

碳市场 / 风险管理 / 调控措施 / 模拟分析 / 系统动力学

Key words

carbon market / risk management / regulation measure / simulation analysis / system dynamics

引用本文

导出引用
朱帮助 , 唐隽捷 , 江民星 , 王平. 基于系统动力学的碳市场风险模拟与调控研究. 系统工程理论与实践, 2022, 42(7): 1859-1872 https://doi.org/10.12011/SETP2021-2504
ZHU Bangzhu , TANG Junjie , JIANG Minxing , WANG Ping. Simulation and regulation of carbon market risk based on system dynamics. Systems Engineering - Theory & Practice, 2022, 42(7): 1859-1872 https://doi.org/10.12011/SETP2021-2504
中图分类号: F83    X820.4   

参考文献

[1] Zhu B, Ye S, Han D, et al. A multiscale analysis for carbon price drivers[J]. Energy Economics, 2019, 78:202-216.
[2] 吕靖烨,曹铭,张金锁,等.基于小波多分辨率的中国碳排放权市场价格波动性研究[J].系统工程理论与实践, 2021, 41(7):1699-1708. Lü J Y, Cao M, Zhang J S, et al. Research on volatility of China's carbon market based on wavelet multiresolution[J]. Systems Engineering-Theory&Practice, 2021, 41(7):1699-1708.
[3] 宋国君,王语苓,姜艺婧.基于"双碳"目标的碳排放控制政策设计[J].中国人口·资源与环境, 2021, 31(9):55-63. Song G J, Wang Y L, Jiang Y J. Carbon emission control policy design based on the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9):55-63.
[4] 张希良,张达,余润心.中国特色全国碳市场设计理论与实践[J].管理世界, 2021, 37(8):80-95.Zhang X L, Zhang D, Yu R X. Theory and practice of China's national carbon emissions trading system[J]. Management World, 2021, 37(8):80-95.
[5] Alberola E, Chevallier J, Chéze B. Price drivers and structural breaks in European carbon prices 2005-2007[J]. Energy Policy, 2008, 36(2):787-797.
[6] Benz E, Trück S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009, 31(1):4-15.
[7] Chevallier J. Carbon futures and macroeconomic risk factors:A view from the EU ETS[J]. Energy Economics, 2009, 31(4):614-625.
[8] Feng Z H, Wei Y M, Wang K. Estimating risk for the carbon market via extreme value theory:An empirical analysis of the EU ETS[J]. Applied Energy, 2012, 99:97-108.
[9] Koch N, Fuss S, Grosjean G, et al. Causes of the EU ETS price drop:Recession, CDM, renewable policies or a bit of everything?-New evidence[J]. Energy Policy, 2014, 73:676-685.
[10] Liu X, Zhou X, Zhu B, et al. Measuring the maturity of carbon market in China:An entropy-based TOPSIS approach[J]. Journal of Cleaner Production, 2019, 229:94-103.
[11] Tang B, Shen C, Zhao Y. Market risk in carbon market:An empirical analysis of the EUA and sCER[J]. Natural Hazards, 2015, 75(2):333-346.
[12] Yi L, Li Z, Yang L, et al. Comprehensive evaluation on the"maturity"of China's carbon markets[J]. Journal of Cleaner Production, 2018, 198:1336-1344.
[13] Xu Y. Risk spillover from energy market uncertainties to the Chinese carbon market[J]. Pacific-Basin Finance Journal, 2021, 67:101561.
[14] Fang S, Cao G. Modelling extreme risks for carbon emission allowances-Evidence from European and Chinese carbon markets[J]. Journal of Cleaner Production, 2021, 316:128023.
[15] Zhu B, Zhou X, Liu X, et al. Exploring the risk spillover effects among China's pilot carbon markets:A regular vine copula-CoES approach[J]. Journal of Cleaner Production, 2020, 242:118455.
[16] Jiao L, Liao Y, Zhou Q. Predicting carbon market risk using information from macroeconomic fundamentals[J]. Energy Economics, 2018, 73:212-227.
[17] Balcilar M, Demirer R, Hammoudeh S, et al. Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk[J]. Energy Economics, 2016, 54:159-172.
[18] Wang L, Tang L, Qiu X M, et al. The risk measurement of China's carbon financial market:Based on GARCH and VAR model[J]. Applied Ecology and Environmental Research, 2019, 17(4):9301-9315.
[19] 王庆山,李健,刘炳春.基于信任治理的中国区域碳市场企业违约风险传染阻断策略[J].系统工程理论与实践, 2017, 37(9):2268-2278.Wang Q S, Li J, Liu B C. Blocking strategy of enterprise default risk in China's regional carbon market based on trust governance[J]. Systems Engineering-Theory&Practice, 2017, 37(9):2268-2278.
[20] Zhu B, Huang L, Yuan L, et al. Exploring the risk spillover effects between carbon market and electricity market:A bidimensional empirical mode decomposition based conditional value at risk approach[J]. International Review of Economics&Finance, 2020, 67:163-175.
[21] Zhu B, Ye S, He K, et al. Measuring the risk of European carbon market:An empirical mode decomposition-based value at risk approach[J]. Annals of Operations Research, 2018, 7:1-23.
[22] 汪明月,刘宇,李梦明,等.区域碳减排能力协同度评价模型构建与应用[J].系统工程理论与实践, 2020, 40(2):470-483.Wang M Y, Liu Y, Li M M, et al. Construction and application of evaluation model for coordinated degree of regional carbon emission[J]. Systems Engineering-Theory&Practice, 2020, 40(2):470-483.
[23] 周雄勇,许志端,郗永勤.中国节能减排系统动力学模型及政策优化仿真[J].系统工程理论与实践, 2018, 38(6):1422-1444.Zhou X Y, Xu Z D, Xi Y Q. The system dynamic model and policy optimized simulation of energy conservation and emission reduction in China[J]. Systems Engineering-Theory&Practice, 2018, 38(6):1422-1444.
[24] 张俊荣,王孜丹,汤铃,等.基于系统动力学的京津冀碳排放交易政策影响研究[J].中国管理科学, 2016, 24(3):1-8.Zhang J R, Wang Z D, Tang L, et al. The Simulation of carbon emission trading system in Beijing-Tianjin-Hebei region:An analysis based on system dynamics[J]. Chinese Journal of Management Science, 2016, 24(3):1-8.
[25] Liu X, Zeng M. Renewable energy investment risk evaluation model based on system dynamics[J]. Renewable and Sustainable Energy Reviews, 2017, 73:782-788.
[26] Zhu B, Tang J, Wang P. Examining the risk of China's pilot carbon markets:A novel integrated approach[J]. Journal of Cleaner Production, 2021, 328:129408.

基金

国家自然科学基金(71771105,71974077,72074120,71903099)
PDF(1082 KB)

1473

Accesses

0

Citation

Detail

段落导航
相关文章

/