城市交通系统有多种出行模式,可为不同类型的通勤者提供出行服务.本文针对瓶颈道路和地铁线路并行的双模式交通系统,首先建立含两组异质通勤者的驾驶小汽车与乘坐地铁的出行模式选择均衡模型.模型中,地铁出行模式考虑边际成本票价和车厢内体触拥挤的影响,驾驶小汽车出行模式引入基于时间成本的系统最优动态收费和固定收费的组合收费策略.其次构建双模式系统总社会成本最小化模型和总收费收入最大化模型,并推导最优的组合收费策略.最后通过数值算例验证理论分析结果.研究结果表明,双模式交通系统在基于时间成本的系统最优动态收费的出行方式分担与无收费均衡下的出行方式分担相同.在组合收费下,提高瓶颈道路固定收费会使出行时间价值和车厢内体触拥挤成本高的通勤者更倾向于驾驶小汽车出行,而出行时间价值和车厢内体触拥挤成本低的通勤者倾向于选择地铁出行,并且,当组合收费中,固定收费部分增加时,此类通勤者的组合收费将降低.
Abstract
There are a variety of travel modes in urban transport system which can provide travel services for different types of commuters. In this paper, firstly, the equilibrium model of the choice between driving car and taking subway with two groups of heterogeneous commuters is established in a dual-mode transport system with bottleneck roads and subway lines, and the modal split is given. In the model, the marginal cost-based subway fare and the impact of the physical contact congestion in carriage are considered in the subway travel mode, and the combination charging strategy of the system optimal dynamic charging based on the time cost and fixed toll are introduced in the car travel mode. Secondly, the optimal models of the total social cost and the total revenue of the dual-mode system are constructed, and the optimal combination charging strategies are deduced. Finally, a numerical example is given to verify the theoretical analysis results. The results show that the increase of fixed tolls on bottleneck roads makes commuters with high travel time value and physical contact congestion cost prefer to travel by car, while commuters with low travel time value and physical contact congestion cost tend to choose subway.
关键词
异质性 /
双模式 /
组合收费 /
系统最优 /
时间成本
{{custom_keyword}} /
Key words
heterogeneity /
dual-mode /
combination pricing /
system optimal /
time cost
{{custom_keyword}} /
中图分类号:
U491
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Vickrey W S. Congestion theory and transport investment[J]. American Economic Review, 1969, 59(2):251-260.
[2] Daganzo C F. The uniqueness of a time-dependent equilibrium distribution of arrivals at a single bottleneck[J]. Transportation Science, 1985, 19(1):29-37.
[3] Arnott R, de Palma A, Lindsey R. Economics of a bottleneck[J]. Journal of Urban Economics, 1990, 27(1):111-130.
[4] Yang H, Huang H J. Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory[J]. Transportation Research Part B, 1997, 31(6):425-440.
[5] de Palma A, Lindsey R. Private roads, competition, and incentives to adopt time-based congestion tolling[J]. Journal of Urban Economics, 2002, 52(2):217-241.
[6] 邓瑶,李志纯.基于活动的瓶颈模型和收费机制:研究进展评述[J].系统工程理论与实践, 2020, 40(8):2076-2089.Deng Y, Li Z C. Activity-based bottleneck model and charging mechanism:A literature review[J]. Systems Engineering-Theory&Practice, 2020, 40(8):2076-2089.
[7] Cohen Y. Commuter welfare under peak-period congestion tolls:Who gains and who loses?[J]. International Journal of Transport Economics, 1987, 14(3):238-266.
[8] Arnott R, de Palma A, Lindsey R. Schedule delay and departure time decisions with heterogeneous commuters[J]. Transportation Research Record, 1988, 1197:56-57.
[9] Arnott R, de Palma A, Lindsey R. The welfare effects of congestion tolls with heterogeneous commuters[J]. Journal of Transport Economics and Policy, 1994, 28(2):139-161.
[10] 吴子啸,黄海军.瓶颈道路使用收费的理论及模型[J].系统工程理论与实践, 2000, 20(1):130-135.Wu Z X, Huang H J. The pricing theory and models in a highway with bottleneck[J]. Systems Engineering-Theory&Practice, 2000, 20(1):130-135.
[11] Tabuchi T. Bottleneck congestion and modal split[J]. Journal of Urban Economics, 1993, 34(3):414-431.
[12] Danielis R, Marcucci E. Bottleneck road congestion pricing with a competing railroad service[J]. Transportation Research Part E, 2002, 38(5):379-388.
[13] Wu W X, Huang H J. Equilibrium and modal split in a competitive highway/transit system under different road-use pricing strategies[J]. Journal of Transport Economics and Policy, 2014, 48:153-169.
[14] Huang H J. Fares and tolls in a competitive system with transit and highway:The case with two groups of commuters[J]. Transportation Research Part E, 2000, 36(4):267-284.
[15] van den Berg V A C, Verhoef E T. Congestion pricing in a road and rail network with heterogeneous values of time and schedule delay[J]. Transportmetrica A, 2014, 10(5):377-400.
[16] 徐淑贤,刘天亮,黄海军.用户异质下公交定价和道路收费收入再分配[J].系统工程理论与实践, 2015, 35(7):1791-1799.Xu S X, Liu T L, Huang H J. Transit pricing and redistribution of toll revenue with user heterogeneity[J]. Systems Engineering-Theory&Practice, 2015, 35(7):1791-1799.
[17] Li Z C, Zhang L. The two-mode problem with bottleneck queuing and transit crowding:How should congestion be priced using tolls and fares?[J]. Transportation Research Part B, 2020, 138:46-76.
[18] 永贵,黄海军.竞争交通系统中异质性用户的出行方式选择[J].系统工程理论与实践, 2016, 36(9):2320-2327.Yong G, Huang H J. Modal split in a competitive system of transit and highway with heterogeneous users[J]. Systems Engineering-Theory&Practice, 2016, 36(9):2320-2327.
[19] 郭晓,孙会君.基于瓶颈模型的异质出行者早高峰出行问题研究[J].系统工程理论与实践, 2018, 38(4):1003-1012. Guo X, Sun H J. Modeling the morning commute problem with heterogeneous travelers based on bottleneck model[J]. Systems Engineering-Theory&Practice, 2018, 38(4):1003-1012.
[20] Tian Q, Liu P, Ong G P, et al. Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users[J]. Transportation Research Part E, 2021, 145:102182.
[21] 吴苏萍,田丽君,方云飞.基于活动效用的通勤者出行方式选择研究[J].系统科学与数学, 2020, 40(10):1737-1748.Wu S P, Tian L J, Fang Y F. Study on the travel mode choice of commuters in an activity-based model[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(10):1737-1748.
[22] 朱玲,卢晓珊.混合驾驶环境下的早高峰出行行为分析[J].系统工程理论与实践, 2021, 41(7):1819-1827.Zhu L, Lu X S. Analysis of morning commuting behavior under mixed driving environment[J]. Systems Engineering-Theory&Practice, 2021, 41(7):1819-1827.
[23] Small K A. The scheduling of consumer activities:Work trips[J]. American Economic Review, 1982, 72(3):467-479.
[24] Liu Y, Nie Y. Morning commute problem considering route choice, user heterogeneity and alternative system optima[J]. Transportation Research Part B, 2011, 45(4):619-642.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(72061027,71961023);内蒙古自然科学基金(2021MS07003);内蒙古自治区高等学校科学技术研究项目(NJZZ20149)
{{custom_fund}}