银行间流动性风险传染救助策略研究:多层网络与媒体情绪的交叉视角

王磊, 李守伟, 陈庭强, 杨坤

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (3) : 678-700.

PDF(4037 KB)
PDF(4037 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (3) : 678-700. DOI: 10.12011/SETP2021-0628
论文

银行间流动性风险传染救助策略研究:多层网络与媒体情绪的交叉视角

    王磊1,2, 李守伟2, 陈庭强1, 杨坤2
作者信息 +

The rescue strategy of interbank liquidity risk contagion:The cross perspective of multilayer network and media sentiment

    WANG Lei1,2, LI Shouwei2, CHEN Tingqiang1, YANG Kun2
Author information +
文章历史 +

摘要

从多层网络与媒体情绪的交叉视角构建内生性多层银行间流动性网络,进而构建银行间流动性风险传染救助策略模型,并仿真分析媒体情绪与救助策略交互作用下银行间流动性风险传染的演化特征.研究得到的主要结论有:在考虑媒体情绪的多层银行间流动性网络中,择优关联方式更有利于银行间流动性风险发生传染,而随机关联方式则有助于抑制银行间流动性风险大规模传染.但是,在单层银行间流动性网络中与之相反.相对于多层银行间流动性网络,单层银行间流动性网络可能高估实际流动性风险水平而非低估.在多层银行间流动性网络中,不仅能够通过综合调节媒体情绪因素达成大幅降低银行间流动性风险传染的目的,而且能够通过综合调节媒体情绪与救助策略因素实现快速抑制银行间流动性风险大幅传染的效果,同时通过综合调节救助策略因素能够更为有效实现银行间流动性风险快速消亡的目的.

Abstract

The cross perspective of multilayer network and media sentiment,this paper constructs endogenous multilayer inter-bank liquidity network,and then constructs rescue strategy model of inter-bank liquidity risk contagion,and simulates and analyzes the evolution characteristics of inter-bank liquidity risk contagion under the interaction of media sentiment and rescue strategy.The main conclusions are as follows:In the multilayer inter-bank liquidity network considering media sentiment,preferential correlation is more conducive to the occurrence of inter-bank liquidity risk contagion,while stochastic correlation is helpful to inhibit the large-scale inter-bank liquidity risk contagion.However,in the single-layer inter-bank liquidity network,the opposite is true.Compared with multilayer inter-bank liquidity network,single-layer interbank liquidity network may overestimate the actual level of liquidity risk rather than underestimate it.In the multilayer inter-bank liquidity network,not only can we achieve the purpose of reducing the contagion of inter-bank liquidity risk by comprehensively adjusting the media sentiment factors,but also can quickly restrain the large-scale contagion of inter-bank liquidity risk by comprehensively adjusting the factors of media sentiment and rescue strategy,and at the same time,through the comprehensive adjustment of the factors of rescue strategy,we can be more effectively realized the purpose of the rapid extinction of inter-bank liquidity risk.

关键词

媒体情绪 / 多层银行间网络 / 流动性风险传染 / 救助策略

Key words

media sentiment / multilayer inter-bank network / liquidity risk contagion / rescue strategy

引用本文

导出引用
王磊 , 李守伟 , 陈庭强 , 杨坤. 银行间流动性风险传染救助策略研究:多层网络与媒体情绪的交叉视角. 系统工程理论与实践, 2022, 42(3): 678-700 https://doi.org/10.12011/SETP2021-0628
WANG Lei , LI Shouwei , CHEN Tingqiang , YANG Kun. The rescue strategy of interbank liquidity risk contagion:The cross perspective of multilayer network and media sentiment. Systems Engineering - Theory & Practice, 2022, 42(3): 678-700 https://doi.org/10.12011/SETP2021-0628
中图分类号: F830.3   

参考文献

[1] Chen N, Liu X, Yao D D. An optimization view of financial systemic risk modeling:Network effect and market liquidity effect[J]. Operations research, 2016, 64(5):1089-1108.
[2] 马勇,李振.资金流动性与银行风险承担——来自中国银行业的经验证据[J].财贸经济, 2019, 40(7):67-81.Ma Y, Li Z. Funding liquidity and bank risk-taking:Empirical evidence from China[J]. Finance & Trade Economics, 2019, 40(7):67-81.
[3] 隋新,何建敏,李亮.银企多金融关联网络模型构建与仿真分析[J].系统科学与数学, 2020, 40(12):2370-2380. Sui X, He J M, Li L. Construction of firm-bank network model with multi-financial links and simulation analysis[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(12):2370-2380.
[4] Zhang J, He L, An Y. Measuring banks'liquidity risk:An option-pricing approach[J]. Journal of Banking & Finance, 2020, 111:105703.
[5] 张冰洁,汪寿阳,魏云捷,等.我国影子银行的风险传导渠道及监管对策研究[J].系统工程理论与实践, 2021, 41(1):15-23.Zhang B J, Wang S Y, Wei Y J, et al. Research on risk transmission channels and supervision policy of shadow banks in China[J]. Systems Engineering — Theory & Practice, 2021, 41(1):15-23.
[6] Davidovic S, Kothiyal A, Galesic M, et al. Liquidity hoarding in financial networks:The role of structural uncertainty[J]. Complexity, 2019:8436505.
[7] 隋聪,王宪峰,王宗尧.银行间债务网络流动性差异对风险传染的影响[J].管理科学学报, 2020, 23(3):65-72.Sui C, Wang X F, Wang Z Y. The impacts of interbank debt network liquidity differences on risk contagion[J]. Journal of Management Sciences in China, 2020, 23(3):65-72.
[8] Davydov D, Vähämaa S, Yasar S. Bank liquidity creation and systemic risk[J]. Journal of Banking & Finance, 2021, 123:106031.
[9] Jord\.ȧȮ, Richter B, Schularick M, et al. Bank capital redux:Solvency, liquidity, and crisis[J]. The Review of Economic Studies, 2021, 88(1):260-286.
[10] 苑莹,王海英,庄新田.基于非线性相依的市场间金融传染度量——测度2015年中国股灾对重要经济体的传染效应[J].系统工程理论与实践, 2020, 40(3):545-558.Yuan Y, Wang H Y, Zhuang X T. Financial contagion measurement between nonlinear inter-dependent markets:Detecting the contagion effects of Chinese stock market crash in 2015 on the world's important economies[J]. Systems Engineering — Theory & Practice, 2020, 40(3):545-558.
[11] Ma J L, Zhu S S, Wu Y. Joint effects of the liability network and portfolio overlapping on systemic financial risk:Contagion and rescue[J]. Quantitative Finance, 2020(8):1-18.
[12] 王霞,付中昊,洪永淼,等.基于非参数回归的金融传染检验[J].系统工程理论与实践, 2020, 40(6):1398-1418.Wang X, Fu Z H, Hong Y M, et al. Nonparametric regression based testing for financial contagion[J]. Systems Engineering — Theory & Practice, 2020, 40(6):1398-1418.
[13] 沈艳,王靖一.媒体报道与未成熟金融市场信息透明度——中国网络借贷市场视角[J].管理世界, 2021, 37(2):35-50.Shen Y, Wang J Y. Media report and information transparency in immature financial markets:The perspective of Peer-to-Peer lending in China[J]. Management World, 2021, 37(2):35-50.
[14] 李学彦,李泽文.流动性失衡问题研究新进展[J].经济学动态, 2018(6):117-128.Li X Y, Li Z W. New progress in the study of liquidity imbalance[J]. Economic Perspectives, 2018(6):117-128.
[15] 马寅杰,李牧遥,蒋志强,等.基于SRISK指标的中国银行业系统性风险度量研究[J].计量经济学报, 2021, 1(1):114-140.Ma Y J, Li M Y, Jiang Z Q, et al. A systematic risk measure of the Chinese banking industry based on SRISK[J]. China Journal of Econometrics, 2021, 1(1):114-140.
[16] 韦立坚,张维,熊熊.股市流动性踩踏危机的形成机理与应对机制[J].管理科学学报, 2017, 20(3):1-23.Wei L J, Zhang W, Xiong X. The mechanism and solution for the liquidity stampede crisis in stock markets[J]. Journal of Management Sciences in China, 2017, 20(3):1-23.
[17] 姜闪闪,范宏.双渠道风险传染下银行系统稳定性分析[J].中国管理科学, 2020, 28(11):51-60.Jiang S S, Fan H. Stability analysis of banking system under dual channel risk contagion[J]. Chinese Journal of Management Science, 2020, 28(11):51-60.
[18] Wang L, Li S, Wang W, et al. A bank liquidity multilayer network based on media emotion[J]. European Physical Journal B, 2021, 94(2):1-23.
[19] Forss T, Sarlin P. News-sentiment networks as a company risk indicator[J]. Journal of Network Theory in Finance, 2018, 4(1):65-86.
[20] 张宗新,吴钊颖.媒体情绪传染与分析师乐观偏差——基于机器学习文本分析方法的经验证据[J].管理世界, 2021, 37(1):170-185.Zhang Z X, Wu Z Y. Media's emotional contagion and analyst optimistic bias:Evidence based on the technique of machine learning[J]. Management World, 2021, 37(1):170-185.
[21] Duz T S, Tas O. Social media sentiment in international stock returns and trading activity[J]. Journal of Behavioral Finance, 2021, 22(2):221-234.
[22] 周爱民,葛琛,遥远.惊弓之鸟:流动性恐慌与股票价格[J].南开经济研究, 2019(4):105-122.Zhou A M, Ge C, Yao Y. The frightened birds:Liquidity panic and stock price[J]. Nankai Economic Studies, 2019(4):105-122.
[23] 陈庭强,马百超,李心丹.投资者情绪、偿债能力与CDS交易对手流动性风险传染[J].系统工程理论与实践, 2020, 40(3):559-578.Chen T Q, Ma B C, Li X D. Investor sentiment, debt solvency and the contagion of CDS counterparty liquidity crisis[J]. Systems Engineering — Theory & Practice, 2020, 40(3):559-578.
[24] Saleemi J. In COVID-19 outbreak, correlating the cost-based market liquidity risk to microblogging sentiment indicators[J]. National Accounting Review, 2020, 2(3):249-262.
[25] 沈沛龙,李志楠.投资者恐慌情绪对银行间风险传染影响研究[J].财贸研究, 2020, 31(3):59-71+110.Shen P L, Li Z N. Influence of investor panic on inter-bank risk contagion[J]. Finance and Trade Research, 2020, 31(3):59-71+110.
[26] Solomon D H, Soltes E, Sosyura D. Winners in the spotlight:Media coverage of fund holdings as a driver of flows[J]. Journal of Financial Economics, 2014, 113(1):53-72.
[27] Rönnqvist S, Sarlin P. Bank networks from text:Interrelations, centrality and determinants[J]. Quantitative Finance, 2015, 15(10):1619-1635.
[28] Bargigli L, Iasio D G, Infante L, et al. The multiplex structure of interbank networks[J]. Quantitative Finance, 2015, 15(4):673-691.
[29] Aldasoro I, Alves I. Multiplex interbank networks and systemic importance:An application to European data[J]. Journal of Financial Stability, 2018, 35:17-37.
[30] 宋砚秋,张玉洁,王瑶琪,等.基于多层网络的中国企业风险投资(CVC)影响力动态评价研究[J].系统科学与数学, 2020, 40(6):969-983.Song Y Q, Zhang Y J, Wang Y Q, et al. Dynamic influence evaluation based on multi-layer network of Chinese corporate venture capital (CVC)[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(6):969-983.
[31] 韩菁,唐箫,余乐安.基于多层网络链路预测的潜在合作关系识别研究[J].系统工程理论与实践, 2021, 41(4):1049-1060.Han J, Tang X, Yu L A. Research on identification of potential partnership based on link prediction with multilayer networks[J]. Systems Engineering — Theory & Practice, 2021, 41(4):1049-1060.
[32] 何奕,童牧,吴珊,等.复杂金融网络中的系统性风险与流动性救助:基于不同网络拓扑结构的研究[J].系统工程理论与实践, 2019, 39(6):1385-1393.He Y, Tong M, Wu S, et al. Systemic risk and liquidity rescue in complex financial networks:A study based on different network topologies[J]. Systems Engineering — Theory & Practice, 2019, 39(6):1385-1393.
[33] Schlepper K, Hofer H, Riordan R, et al. The market microstructure of central bank bond purchases[J]. Journal of Financial & Quantitative Analysis, 2020, 55(1):193-221.
[34] Smaoui H, Mimouni K, Miniaoui H, et al. Funding liquidity risk and banks'risk-taking:Evidence from Islamic and conventional banks[J]. Pacific-Basin Finance Journal, 2020, 64:101436.
[35] 李晓伟,宗计川.金融稳定视角下的流动性风险传染研究新进展[J].经济学动态, 2018(4):138-147.Li X W, Zong J C. New progress in the study of liquidity risk transmission from the perspective of financial stability[J]. Economic Perspectives, 2018(4):138-147.
[36] 何贤杰,王孝钰,孙淑伟,等.网络新媒体信息披露的经济后果研究——基于股价同步性的视角[J].管理科学学报, 2018, 21(6):43-59.He X J, Wang X Y, Sun S W, et al. Economic consequences of new media information disclosure:From the perspective of stock price synchronicity[J]. Journal of Management Sciences in China, 2018, 21(6):43-59.
[37] Wang L, Li S, Chen T. Investor behavior, information disclosure strategy and counterparty credit risk contagion[J]. Chaos Solitons & Fractals, 2019, 119:37-49.
[38] Ferrara G, Langfield S, Liu Z, et al. Systemic illiquidity in the interbank network[J]. Quantitative Finance, 2019, 19(11):1779-1795.
[39] Fang L, Peress J. Media coverage and the cross-section of stock returns[J]. The Journal of Finance, 2009, 64(5):2023-2052.
[40] 王晓丹,尚维,汪寿阳.互联网新闻媒体报道对我国股市的影响分析[J].系统工程理论与实践, 2019, 39(12):3038-3047.Wang X D, Shang W, Wang S Y. The effects of online news on the Chinese stock market[J]. Systems Engineering — Theory & Practice, 2019, 39(12):3038-3047.
[41] Yang X, Zhu Y, Cheng T Y. How the individual investors took on big data:The effect of panic from the internet stock message boards on stock price crash[J]. Pacific-Basin Finance Journal, 2020, 59:101245.
[42] Castiglionesi F, Navarro N.(In) Efficient interbank networks[J]. Journal of Money, Credit and Banking, 2020, 52(2-3):365-407.
[43] Liu A, Paddrik M, Yang S Y, et al. Interbank contagion:An agent-based model approach to endogenously formed networks[J]. Journal of Banking & Finance, 2020, 112:105191.
[44] 李守伟,王磊,刘晓星,等.跨银行与企业部门的系统性风险研究[J].系统工程理论与实践, 2020, 40(10):2492-2504.Li S W, Wang L, Liu X X, et al. Systemic risk across the banking sector and the firm sector[J]. Systems Engineering — Theory & Practice, 2020, 40(10):2492-2504.
[45] Wan X, Yang J, Marinov S, et al. Sentiment correlation in financial news networks and associated market movements[J]. Scientific reports, 2021, 11(1):1-12.
[46] Correa R, Goldberg L S. Bank complexity, governance, and risk[J]. Journal of Banking & Finance, 2021(3):106013.
[47] 朱恩伟,吴璟,刘洪玉.基于新闻文本共现性的银企关系分析——以房地产上市公司为例[J].金融研究, 2019(2):117-135.Zhu E W, Wu J, Liu H Y. Bank-firm relationship analysis based on co-occurrence in news texts:Evidence from listed real estate companies in China[J]. Journal of Financial Research, 2019(2):117-135.
[48] 部慧,解峥,李佳鸿,等.基于股评的投资者情绪对股票市场的影响[J].管理科学学报, 2018, 21(4):86-101.Bu H, Xie Z, Li J H, et al. Investor sentiment extracted from internet stock message boards and its effect on Chinese stock market[J]. Journal of Management Sciences in China, 2018, 21(4):86-101.
[49] Gazzani A. News and noise bubbles in the housing market[J]. Review of Economic Dynamics, 2020, 36:46-72.
[50] Peress J, Schmidt D. Glued to the TV:Distracted noise traders and stock market liquidity[J]. The Journal of Finance, 2020, 75(2):1083-1133.
[51] 童牧,何奕.复杂金融网络中的系统性风险与流动性救助——基于中国大额支付系统的研究[J].金融研究, 2012(9):20-33.Tong M, He Y. Systemic risk and liquidity rescue in complex financial network:Based on the research of China's large payment system[J]. Journal of Financial Research, 2012(9):20-33.
[52] Carpinelli L, Crosignani M. The design and transmission of central bank liquidity provisions[J]. Journal of Financial Economics, 2021, 141(1):27-47.
[53] Rogers L C G, Veraart L A M. Failure and rescue in an interbank network[J]. Management Science, 2013, 59(4):882-898.
[54] Baker C, Cummings C, Jagtiani J. The impacts of financial regulations:Solvency and liquidity in the post-crisis period[J]. Journal of Financial Regulation and Compliance, 2017, 25(3):253-270.
[55] 田婧倩,刘晓星.媒体舆情、政府监管与市场行为——基于信息博弈的结构性视角[J].计量经济学报, 2021, 1(1):141-160.Tian J Q, Liu X X. Media sensation, government supervision and market behavior:A structural perspective based on information game[J]. China Journal of Econometrics, 2021, 1(1):141-160.
[56] Koenig P J, Pothier D. Safe but fragile:Information acquisition, liquidity support and redemption runs[J]. Journal of Financial Intermediation, 2020(3):100898.
[57] Chen T, He J, Li X. An evolving network model of credit risk contagion in the financial market[J]. Technological and Economic Development of Economy, 2017, 23(1):22-37.

基金

国家自然科学基金(71871115,71671037,71971111);江苏省第十六批"六大人才高峰"高层次人才培养项目(JY-004)
PDF(4037 KB)

1100

Accesses

0

Citation

Detail

段落导航
相关文章

/