方差风险溢价和收益率预测:来自上证50ETF期权市场的证据

李志勇, 余湄, 汪寿阳

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (2) : 306-319.

PDF(846 KB)
PDF(846 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (2) : 306-319. DOI: 10.12011/SETP2021-0600
论文

方差风险溢价和收益率预测:来自上证50ETF期权市场的证据

    李志勇1, 余湄2, 汪寿阳3
作者信息 +

Variance risk premiums and return predictability: Evidence from SSE 50ETF options

    LI Zhiyong1, YU Mei2, WANG Shouyang3
Author information +
文章历史 +

摘要

方差风险溢价反映了投资者的风险规避程度和其对极端风险损失的高估.本文首次将我国期权市场的方差风险溢价分解为向上和向下的方差风险溢价,讨论其预测效果,同时还通过构造Delta对冲组合对方差风险溢价进行检验.研究发现,方差风险溢价显著为正,Delta对冲组合的收益显著为负,两者相互印证了一个事实:中国投资者是风险规避的,并愿意为对冲方差风险支付溢价.研究结果还表明和成熟市场不同,中国市场的方差风险溢价对收益率缺少预测能力,向上方差风险溢价和向下方差风险溢价均没有表现出显著的预测能力.本文的研究丰富了对中国期权市场投资者行为的理解.

Abstract

Variance risk premium reflects the degree of risk aversion of investors and their overestimation of extreme risk loss. This paper decomposes the variance risk premium of China's option market into upside and downside variance risk premium for the first time, discusses its return predictability, and tests the variance risk premium by constructing delta hedging portfolio. The results show that the variance risk premium is significantly positive and the return of delta hedging portfolio is significantly negative, which confirms the fact that Chinese investors are risk averse and willing to pay a premium for hedging variance risk. The results also show that different from the mature market, the variance risk premium of Chinese market lacks the ability to predict the market return. Both downside variance risk premium and upside variance risk premium have no significant predictive power. Our research enriches the understanding of investors' behavior in China's option market.

关键词

方差风险溢价 / 向上和向下方差风险溢价 / Delta对冲 / 收益率预测

Key words

variance risk premiums / downside and upside variance risk premiums / Delta hedging / return predictability

引用本文

导出引用
李志勇 , 余湄 , 汪寿阳. 方差风险溢价和收益率预测:来自上证50ETF期权市场的证据. 系统工程理论与实践, 2022, 42(2): 306-319 https://doi.org/10.12011/SETP2021-0600
LI Zhiyong , YU Mei , WANG Shouyang. Variance risk premiums and return predictability: Evidence from SSE 50ETF options. Systems Engineering - Theory & Practice, 2022, 42(2): 306-319 https://doi.org/10.12011/SETP2021-0600
中图分类号: F224    F831   

参考文献

[1] Bollerslev T, Tauchen G, Zhou H. Expected stock returns and variance risk premia[J]. The Review of Financial Studies, 2009, 22(11):4463-4492.
[2] Kilic M, Shaliastovich I. Good and bad variance premia and expected returns[J]. Management Science, 2019, 65(6):2522-2544.
[3] Carr P, Wu L. Variance risk premiums[J]. The Review of Financial Studies, 2009, 22(3):1311-1341.
[4] Bollerslev T, Gibson M, Zhou H. Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities[J]. Journal of Econometrics, 2011, 160(1):235-245.
[5] Feunou B, Jahanparvar M R, Okou C, et al. Downside variance risk premium[J]. Journal of Financial Econometrics, 2018, 16(3):341-383.
[6] Bali T G, Zhou H. Risk, uncertainty, and expected returns[J]. Journal of Financial and Quantitative Analysis, 2016, 51(3):707-735.
[7] Qiao F, Xu L, Zhang X, et al. Variance risk premiums in emerging markets:Global integration and economic uncertainty[R]. SSRN Working Paper, 2019.
[8] Pyun S. Variance risk in aggregate stock returns and time-varying return predictability[J]. Journal of Financial Economics, 2019, 132(1):150-174.
[9] Han B, Zhou Y. Variance risk premium and cross-section of stock returns[J]. Social Science Electronic Publishing. 2012. doi:10.2139/ssrn.2020024.
[10] Bai H, Zhang X, Zhou H. Option return predictability and variance risk premium[R]. SSRN Working Paper, 2019.
[11] 郑振龙, 秦明.隐含波动率与实际波动率的关系:中美比较[J].管理科学, 2018, 31(6):58-73.Zheng Z L, Qin M. The relationship between implied volatility and real volatility:A comparison between China and the United States[J]. Management Science, 2018, 31(6):58-73.
[12] 丛明舒.中国场内期权市场研究——基于中美关于期权隐含方差的差异[J].金融研究, 2018(12):189-206. Cong M S. Research on China's market of options on the market:Based on the difference between China and the United States on the implied variance of options[J]. Financial Research, 2018(12):189-206.
[13] Zheng Z, Jiang Z, Chen R. AVIX:An improved VIX based on stochastic interest rates and an adaptive screening mechanism[J]. Journal of Futures Markets, 2017, 37(4):374-410.
[14] 田凤平, 杨科. 我国商品期货的无模型隐含方差与方差风险溢价研究——基于豆粕和白糖的分析[J]. 系统工程理论与实践, 2021, 41(8):2015-2029. Tian F P, Yang K. Model-free implied variance and variance risk premium for commodity futures in China:A study on soybean meal and sugar[J]. Systems Engineering-Theory & Practice, 2021, 41(8):2015-2029.
[15] 胡昌生,程志富.投资者情绪对上证50ETF隐含分布偏度影响的实证研究[J].数理统计与管理, 2019, 38(3):549-560. Hu C S, Cheng Z F. An empirical study on the inuence of investor sentiment on the skewness of implied distribution of Shanghai 50ETF[J]. Mathematical statistics and management, 2019, 38(3):549-560.
[16] Yu X, Wang Z, Xiao W, et al. Is the nonlinear hedge of options more effective?-Evidence from the SSE 50 ETF options in China[J]. The North American Journal of Economics and Finance, 2020, 54(11):100916.
[17] Liu D, Qiu Q, Hughen J C, et al. Price discovery in the price disagreement between equity and option markets:Evidence from SSE ETF50 options of China[J]. International Review of Economics Finance, 2019, 64(11):557-571.
[18] 孙有发, 郭婷, 刘彩燕, 等. 股灾期间上证50ETF期权定价研究[J]. 系统工程理论与实践, 2018, 38(11):2721-2737.Sun Y F, Guo T, Liu C Y, et al. Research on option pricing of Shanghai stock exchange 50ETF during stock market crash[J]. Systems Engineering-Theory & Practice, 2018, 38(11):2721-2737.
[19] 孙有发, 吴碧云, 郭婷, 等. 非仿射随机波动率模型下的50ETF期权定价:基于Fourier-Cosine方法[J]. 系统工程理论与实践, 2020, 40(4):888-904. Sun Y F, Wu B Y, Guo T, et al. Fourier-Cosine based option pricing for SSE 50 ETF under non-affine stochastic volatility model[J]. Systems Engineering-Theory & Practice, 2020, 40(4):888-904.
[20] 王西梅, 赵延龙, 史若诗, 等. 基于局部波动率模型的上证50ETF期权定价研究[J]. 系统工程理论与实践, 2019, 39(10):2487-2501. Wang X M, Zhao Y L, Shi R S, et al. Research on option pricing of Shanghai stock exchange 50ETF based on local volatility model[J]. Systems Engineering-Theory & Practice, 2019, 39(10):2487-2501.
[21] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics, 2001, 61(1):43-76.
[22] Barndor-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk-realised semi-variance[M]//Bollerslev T, Russell J, Watson M. Volatility and Time Series Econometrics:Essays in Honor of Robert F. Engle. New York:Oxford University Press, 2010.
[23] Bakshi G, Kapadia N, Madan D. Stock return characteristics, skew laws, and the differential pricing of individual equity options[J]. The Review of Financial Studies, 2003, 16(1):101-143.
[24] Hodrick R J. Dividend yields and expected stock returns:Alternative procedures for inference and measurement[J]. The Review of Financial Studies, 1992, 5(3):357-386.
[25] Bollerslev T, Todorov V, Xu L, et al. Tail risk premia and return predictability[J]. Journal of Financial Economics, 2015, 118(1):113-134.

基金

国家自然科学基金(72071046);国家自然科学基金重大项目(71790605)
PDF(846 KB)

Accesses

Citation

Detail

段落导航
相关文章

/