
切换拓扑下多刚体系统分组姿态协同控制
Group attitude cooperative control of multiple rigid bodies system with switching topologies
针对切换拓扑条件下的多刚体系统分组姿态协同控制问题进行了研究.采用修正型罗德里格斯参数(modified Rodrigues parameters)描述刚体姿态.构造的多刚体系统包含若干个分组,并通过分块的邻接矩阵和Laplacian矩阵来描述切换拓扑.给定了分组姿态协同的定义,设计了分布式的控制输入.证明了多刚体系统达到分组姿态协同的充要条件是系统拓扑为连通图.并且每个拓扑的驻留时间不影响系统达到分组姿态协同.理论分析过程中应用了Lyapunov稳定性理论.计算机仿真表明了所设计的控制输入的有效性;并且仿真结果说明,如果切换拓扑不连通,那么多刚体系统无法达到分组姿态协同.
Group attitude cooperative control of multiple rigid bodies system is investigated in this paper. The attitude of rigid bodies is described by modified Rodrigues parameters. The multiple rigid bodies system is constructed with several subgroups in it, and the switching topologies are denoted by block adjacency matrix and block Laplacian matrix. The definition of group attitude cooperation is provided, and distributed control input is designed. It is proved that the topologies being connected is the sufficient and necessary condition for multiple rigid bodies system to achieve group attitude cooperation. And the system reaching group attitude cooperation is not influenced by the dwelling time of each topology. Lyapunov stability theory is applied in the theoretical analysis. Computer simulation shows the correctness and effectiveness of the method proposed, and the simulation results show that if the switching topologies are not connected, the system cannot reach group attitude cooperation.
多刚体系统 / 分组 / 姿态协同 / 切换拓扑 / 驻留时间 {{custom_keyword}} /
multiple rigid bodies system / group / attitude cooperation / switching topologies / dwelling time {{custom_keyword}} /
[1] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(7):17-25.Duan H B, Li P. Autonomous control for unmanned aerial vehicle swarms based on biological collective behaviors[J]. Science and Technology Review, 2017, 35(7):17-25.
[2] 马鸣宇, 董朝阳, 马思迁, 等. 基于SO(3)的多四旋翼无人机编队协同控制[J]. 控制理论与应用, 2018, 35(9):1229-1238. Ma M Y, Dong C Y, Ma S Q, et al. Coordinated control of multiple quadrotors formation on SO(3)[J]. Control Theory & Applications, 2018, 35(9):1229-1238.
[3] 傅敬博, 刘明. 星间通讯延迟情形下的SAR卫星编队姿态协同控制[C]//The 36th Chinese Control Conference (CCC2017), 2017:7869-7873. Fu J B, Liu M. Coordinated attitude control for SAR satellites with communication delay[C]//The 36th Chinese Control Conference (CCC2017), 2017:7869-7873.
[4] 王智鹏, 郭凤至, 孙兆伟, 等. 事件驱动的卫星编队姿态分布式协同控制[J]. 哈尔滨工业大学学报, 2018, 50(10):41-47. Wang Z P, Guo F Z, Sun Z W, et al. Event-triggered distributed attitude coordination control of satellite formation[J]. Journal of Harbin Institute of Technology, 2018, 50(10):41-47.
[5] Yi H, Liu M, Li M. Event-triggered fault tolerant control for spacecraft formation attitude synchronization with limited data communication[J]. European Journal of Control, 2019(48):97-103.
[6] 周健, 龚春林, 粟华, 等. 复杂约束下的编队姿态有限时间协同控制方法[J]. 宇航学报, 2018, 39(12):1340-1347. Zhou J, Gong C L, Li H, et al. Finite-time distributed synchronization of spacecraft formation attitude with complex constraints[J]. Journal of Astronautics, 2018, 39(12):1340-1347.
[7] Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies[J]. IEEE Transactions on Control Systems Technology, 2009, 18(2):383-392.
[8] 党宏涛, 伊国兴, 李清华. 基于有向图的航天器编队飞行自适应姿态协同控制[J]. 导航定位与授时, 2015, 2(2):7-15. Dang H T, Yin G X, Li Q H. Adaptive attitude cooperative control for spacecraft formation flying under directed communication topology[J]. Navigation Positioning & Timing, 2015, 2(2):7-15.
[9] Xia Y Q, Zhou N, Lu K F, et al. Attitude control of multiple rigid bodies with uncertainties and disturbances[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1):2-10.
[10] 马龙, 王仕成, 闵海波, 等. 通信时延和联合连通拓扑下多刚体系统分布式姿态一致性控制[J]. 控制理论与应用, 2016, 33(9):1162-1170. Ma L, Wang S C, Min H B, et al. Distributed attitude consensus for multiple rigid body systems with communication delay and jointly connected topologies[J]. Control Theory & Applications, 2016, 33(9):1162-1170.
[11] 杨丽媛, 吕建婷, 林杨, 等. 编队航天器有限时间姿态协同控制[C]//The 29th Chinese Control Decision Conference (CCDC 2017), 2017:1556-1561. Yang L Y, Lü J T, Lin Y, et al. Finite-time attitude coordination control for formation spacecraft[C]//The 29th Chinese Control and Decision Conference (CCDC 2017), 2017:1556-15616.
[12] Zhang J, Ye D, Biggs J D, et al. Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies[J]. Advances in Space Research, 2019, 63(3):1161-1175.
[13] Xia Y, Zhang J, Lu K, et al. Finite time and cooperative control of flight vehicles[M]. Singapore:Springer, 2019:215-231.
[14] Zou A M, Fan Z. Distributed fixed-time attitude coordination control for multiple rigid spacecraft[J]. International Journal of Robust Nonlinear Control, 2020, 30(1):266-281.
[15] Sui W S, Duan G R, Hou M Z, et al. Distributed fixed-time attitude synchronization control for multiple rigid spacecraft[J]. International Journal of Control, Automation and Systems, 2019, 17(5):1117-1130.
[16] 周绍磊,王帅磊,刘伟,等.基于分组一致性的刚体集群姿态协同控制[J].中国科学:技术科学, 2020, 50(5):493-505.Zhou S L, Wang S L, Liu W, et al. Rigid body swarms attitude cooperative control based on group consensus[J]. Scientia Sinica Technologica, 2020, 50(5):493-505.
[17] Yu J, Wang L. Group consensus of multi-agent systems with undirected communication graphs[C]//Asian Control Conference, ASCC 2009, IEEE, 2009:105-110.
[18] Yu J, Wang L. Group consensus in multi-agent systems with switching topologies and communication delays[J]. Systems & Control Letters, 2010, 59(6):340-348.
[19] Yu J, Wang L. Group consensus of multi-agent systems with directed information exchange[J]. International Journal of Systems Science, 2012, 43(2):334-348.
[20] Weng S X, Dong Y, Xie X, et al. Distributed event-triggered cooperative attitude control of multiple groups of rigid bodies on manifold SO(3)[J]. Information Sciences, 2016, 370-371:636-649.
[21] Shang Y L. Group pinning consensus under fixed and randomly switching topologies with acyclic partition[J]. Networks & Heterogeneous Media, 2014, 9(3):553-573.
[22] Wen G Y, Huang J, Wang C Y, et al. Group consensus control for heterogeneous multi-agent systems with fixed and switching topologies[J]. International Journal of Control, 2016, 89(2):259-269.
[23] Gao Y, Yu J Y, Shao J L, et al. Group consensus for second-order discrete-time multi-agent systems with time-varying delays under switching topologies[J]. Neurocomputing, 2016, 207:805-812.
[24] Ma L, Wang S, Min H, et al. Distributed attitude consensus for multiple rigid spacecraft under jointly connected switching topologies[J]. Journal of Control Science and Engineering, 2016, 2016:2540914.
[25] Lu M, Liu L. Leader-following attitude consensus of multiple rigid spacecraft systems under switching networks[J]. IEEE Transactions on Automatic Control, 2019, 65(2):839-845.
[26] Liu T, Huang J. Leader-following attitude consensus of multiple rigid body systems subject to jointly connected switching networks[J]. Automatica, 2018, 92:63-71.
[27] Rezaee H, Abdollahi F. Almost sure attitude consensus in multispacecraft systems with stochastic communication links[J]. IFAC-PapersOnLine, 2017, 50(1):9392-9397.
[28] 哈里尔. 非线性系统[M]. 朱义胜, 董辉, 等, 译. 2版.北京:电子工业出版社, 2011. Khalil H K. Nonlinear systems[M]. 2nd ed. Beijing:Publishing House of Electronics Industry, 2011. }
国家自然科学基金(61273058)
/
〈 |
|
〉 |