高维稀疏低秩的多目标矩阵回归模型及其组合管理策略

李爱忠, 任若恩, 李泽楷, 董纪昌

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2292-2301.

PDF(874 KB)
PDF(874 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2292-2301. DOI: 10.12011/1000-6788-2020-0003-10
论文

高维稀疏低秩的多目标矩阵回归模型及其组合管理策略

    李爱忠1, 任若恩2, 李泽楷3, 董纪昌4
作者信息 +

High-dimensional sparse low-rank multi-objective matrix regression model and its portfolio management strategy

    LI Aizhong1, REN Ruoen2, LI Zekai3, DONG Jichang4
Author information +
文章历史 +

摘要

本文通过双因子随机过程表征资产价格的长短期运行趋势,选择具有重要影响力的市场指数构建有效市场组合,采用稀疏低秩的多目标回归方法深度挖掘市场特征,并自适应地捕捉市场趋势,最终利用预配权稀疏分散再优化方法获得矩阵回归的最优投资策略.研究发现高维稀疏低秩策略不仅可以实现全局和局部降维、低秩和稀疏约减的统一,还可以选择性地降低高维资产数目,更好地捕捉资产的非线性特性,更容易抓住资产间的关联关系.多目标稀疏分散回归策略具有集中配置资源、稀疏分散风险和稳定提高投资组合整体绩效的能力,组合管理成本更低,优越性更明显.实证结论对量化投资组合管理、资产配置优化及投资分析具有重要指导意义.

Abstract

This paper uses a two-factor stochastic process to characterize the long-term and short-term operating trends of asset prices, selects market indexes with important influences to build an effective market portfolio, uses sparse low-rank multi-objective regression methods to deeply explore market characteristics, and adaptively captures market trends. Finally, the optimal investment strategy for matrix regression is obtained by using the sparse decentralized re-optimization method of pre-assignment weights. The study found that the high-dimensional sparse low-rank strategy can not only achieve the unity of global and local dimensionality reduction, but also selectively discard high-dimensional assets, better capture the nonlinear characteristics of assets, and make it easier to grasp the relationship between assets. The multi-objective sparse and decentralized regression strategy has the ability to centrally allocate resources, sparsely disperse risks, and steadily improve the overall performance of the portfolio. The portfolio management cost is lower and the advantages are more obvious. The empirical conclusions have important guiding significance for quantitative portfolio management, asset allocation optimization and investment analysis.

关键词

稀疏低秩 / 降维 / 多目标矩阵回归 / 组合优化

Key words

sparse low rank / dimension reduction / multi-objective matrix regression / portfolio optimization

引用本文

导出引用
李爱忠 , 任若恩 , 李泽楷 , 董纪昌. 高维稀疏低秩的多目标矩阵回归模型及其组合管理策略. 系统工程理论与实践, 2020, 40(9): 2292-2301 https://doi.org/10.12011/1000-6788-2020-0003-10
LI Aizhong , REN Ruoen , LI Zekai , DONG Jichang. High-dimensional sparse low-rank multi-objective matrix regression model and its portfolio management strategy. Systems Engineering - Theory & Practice, 2020, 40(9): 2292-2301 https://doi.org/10.12011/1000-6788-2020-0003-10
中图分类号: F830   

参考文献

[1] Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7(1):77-91.
[2] Sharpe W. Capital asset prices:A theory of market equilibrium under conditions of risk[J]. Journal of Finance, 1964, 19:425-442.
[3] Malkiel B G, Fama E F. Efficient capital markets:A review of theory and empirical work[J]. Journal of Finance, 1970, 25(2):383-417.
[4] 朱书尚, 李端, 周迅宇, 等. 论投资组合与金融优化——对理论研究和实践的分析与反思[J]. 管理科学学报, 2004, 7(6):1-12.Zhu S S, Li D, Zhou X Y, et al. Review and research issues on portfolio selection and financial optimization[J]. Journal of Management Sciences in China, 2004, 7(6):1-12.
[5] Roy A D. Safety-first and the holding of assets[J]. Econometrics, 1952, 20:431-449.
[6] Bogentoft E, Romeijn H E, Uryasev S. Asset/liability management for pension funds using CVaR constraints[J]. Journal of Risk Finance, 2001, 3:57-71.
[7] Castellacci G, Siclari M J. The practice of Delta-Gamma VaR:Implementing the quadratic portfolio model[J]. European Journal of Operational Research, 2003, 150:529-545.
[8] Taylor J W. Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric laplace distribution[J]. Journal of Business & Economic Statistics, 2019, 37(1):121-133.
[9] Topaloglou N, Vladimirou H, Zenios S A. CVaR models with selective hedging for international asset allocation[J]. Journal of Banking and Finance, 2002, 26:1535-1561.
[10] Rockafellar R T, Uryasev S. Optimization of conditional Value-at-Risk[J]. The Journal of Risk, 2000, 2:21-41.
[11] Rockafellar R T, Uryasev S. Conditional Value-at-Risk for general loss distributions[J]. Journal of Banking and Finance, 2002, 26:1443-1471.
[12] Chacko G, Viceira L M. Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets[J]. Review of Financial Studies, 2005, 18(4):1369-1402.
[13] Hnatkovska V. Home bias and high turnover:Dynamic portfolio choice with incomplete markets[J]. SSRN Electronic Journal, 2008, 80(1):113-128.
[14] Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market[J]. Management Science, 1991, 37:519-531.
[15] Konno H, Suzuki K. A mean-variance-skewness optimization model[J]. Journal of the Operations Research Society of Japan, 1995, 38:173-187.
[16] Sohn H S, Bricker D L, Tseng T L. Mean value cross decomposition for two-stage stochastic linear programming with recourse[J]. Open Operational Research Journal, 2011, 3(1):30-38.
[17] Gulten S, Ruszczynski A. Two-stage portfolio optimization with higher-order conditional measures of risk[J]. Annals of Operations Research, 2015, 229(1):409-427.
[18] Samuelson P. Lifetime portfolio selection by dynamic stochastic programming[J]. Review of Economics and Statistics, 1969, 50:239-246.
[19] Merton R C. Lifetime portfolio selection under uncertainty:The continuous-time case[J]. Review of Economics and Statistics, 1969, 51:247-257.
[20] Fama E F. Multiperiod consumption-investment decisions[J]. American Economic Review, 1970, 60:163-174.
[21] Mossin J. Optimal multiperiod portfolio policies[J]. Journal of Business, 1968, 41:215-229.
[22] Hakansson N H. On optimal myopic portfolio policies with and without serial correlation of yields[J]. Journal of Business, 1971, 44:324-334.
[23] Dantzig G B, Infanger G. Multi-stage stochastic linear programs for portfolio optimization[J]. Annals of Operations Research, 1993, 45:59-76.
[24] Ostermark R. Vector forecasting and dynamic portfolio selection:Empirical efficiency of recursive multiperiod strategies[J]. European Journal of Operational Research, 1991, 55:46-56.
[25] 刘祥东, 范彬, 杨易铭, 等. 基于M-Copula-SV-t模型的高维组合风险度量[J]. 中国管理科学, 2017, 25(2):1-9.Liu X D, Fan B, Yang Y M, et al. High-dimensional portfolio risk measurement based on M-Copula-SV-t model[J]. Chinese Journal of Management Science, 2017, 25(2):1-9.
[26] 赵钊. 高维条件协方差矩阵的非线性压缩估计及其在构建最优投资组合中的应用[J]. 中国管理科学, 2017, 25(8):46-57.Zhao Z. Nonlinear shrinkage estimation of high dimensional conditional covariance matrix and its application in portfolio selection[J]. Chinese Journal of Management Science, 2017, 25(8):46-57.
[27] 刘丽萍. 高维投资组合风险的估计[J]. 系统科学与数学, 2018, 38(8):919-930.Liu L P. Estimation of high dimensional portfolio risk[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(8):919-930.
[28] 韩超, 严太华. 基于高维动态藤Copula的汇率组合风险分析[J]. 中国管理科学, 2017, 25(2):10-20.Han C, Yan T H. Risk analysis of foreign exchange portfolios based on high-dimensional dynamic vine copula[J]. Chinese Journal of Management Science, 2017, 25(2):10-20.
[29] 潘志远, 毛金龙, 周彬蕊. 高维的相关性建模及其在资产组合中的应用[J]. 金融研究, 2018, 452(2):190-206.Pan Z Y, Mao J L, Zhou B R. Modeling high-dimensional correlation and its application to asset allocation[J]. Journal of Financial Research, 2018, 452(2):190-206.
[30] 宋鹏, 胡永宏. 基于已实现协方差矩阵的高维金融资产投资组合应用[J]. 统计与信息论坛, 2017, 32(8):63-69.Song P, Hu Y H. High-dimensional financial assets portfolio selection based on realized covariance matrix[J]. Statistics & Information Forum, 2017, 32(8):63-69.
[31] 唐勇, 朱鹏飞. 基于分形视角下的沪港股市投资组合策略[J]. 系统工程理论与实践, 2018, 38(9):2188-2201.Tang Y, Zhu P F. Portfolio strategies of Shanghai and Hong Kong stock markets from the perspective of fractal theory[J]. Systems Engineering-Theory & Practice, 2018, 38(9):2188-2201.
[32] 于孝建, 王秀花, 徐维军. 基于滚动经济回撤约束和下半方差的最优投资组合策略[J]. 系统工程理论与实践, 2018, 38(3):545-555.Yu X J, Wang X H, Xu W J. Optimal portfolio strategy under rolling economic drawdown constraints with lower semi-variance[J]. Systems Engineering-Theory & Practice, 2018, 38(3):545-555.

基金

国家社会科学基金(19BTJ026)
PDF(874 KB)

586

Accesses

0

Citation

Detail

段落导航
相关文章

/