耦合三角函数的灰色GM(1,1,T)模型及其应用

罗党, 王小雷

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (7) : 1906-1917.

PDF(918 KB)
PDF(918 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (7) : 1906-1917. DOI: 10.12011/1000-6788-2019-0381-12
论文

耦合三角函数的灰色GM(1,1,T)模型及其应用

    罗党, 王小雷
作者信息 +

Grey GM(1,1,T) model coupled with trigonometric function and its application

    LUO Dang, WANG Xiaolei
Author information +
文章历史 +

摘要

针对小样本序列的周期性波动特征,将三角函数引入灰色预测模型,提出了耦合结构的灰色GM(1,1,T)模型,该模型适用于既存在周期性又具有趋势性的复合型序列.基于最小二乘思想,探讨了模型参数估计的非线性优化问题,利用Levenberg-Marquardt算法进行求解,并给出了初始点选取的经验方法;通过数值实验验证了模型的适用性和参数估计方法的可行性;最后将该模型应用于河南省获嘉县、禹州市、偃师市的农业干旱预测,结果表明2016-2017年河南省土壤含水量呈现出区域性差异,与实际干旱情势比较吻合.

Abstract

For the periodic fluctuation characteristic of small sample sequences, the trigonometric function is introduced into the grey forecasting model, and a grey GM(1,1,T) model with coupling structure is proposed, which is suitable for compound sequences with trend and periodicity. Based on the least squares theory, the nonlinear optimization problem of model parameter estimation is discussed, which is solved by Levenberg-Marquardt optimization algorithm, and the empirical method of initial point selection is given. The applicability of the model and the effectiveness of the parameter estimation method are verified by numerical experiments. Finally, the GM(1,1,T) model is applied to predict the agricultural drought in Huojia County, Yuzhou City, and Yanshi City of Henan Province. The result shows that there were regional differences in soil water content in Henan Province from 2016 to 2017, which is consistent with the actual drought situation.

关键词

灰色周期预测 / GM(1 / 1 / T)模型 / Levenberg-Marquardt 算法 / 农业干旱预测

Key words

grey periodic forecasting / GM(1,1,T) model / Levenberg-Marquardt algorithm / agricultural drought prediction

引用本文

导出引用
罗党 , 王小雷. 耦合三角函数的灰色GM(1,1,T)模型及其应用. 系统工程理论与实践, 2020, 40(7): 1906-1917 https://doi.org/10.12011/1000-6788-2019-0381-12
LUO Dang , WANG Xiaolei. Grey GM(1,1,T) model coupled with trigonometric function and its application. Systems Engineering - Theory & Practice, 2020, 40(7): 1906-1917 https://doi.org/10.12011/1000-6788-2019-0381-12
中图分类号: N941.5   

参考文献

[1] 刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及其应用[M]. 7版. 北京:科学出版社, 2014:140-168.Liu S F, Yang Y J, Wu L F, et al. Grey system theory and applications[M]. 7th ed. Beijing:Science Press, 2014:140-168.
[2] 姜翔程, 陈森发. 加权马尔可夫SCGM(1,1)C模型在农作物干旱受灾面积预测中的应用[J]. 系统工程理论与实践, 2009, 29(9):179-185.Jiang X C, Chen S F. Application of weighted Markov SCGM(1,1)C model to predict drought crop area[J]. Systems Engineering-Theory & Practice, 2009, 29(9):179-185.
[3] Luo D. Risk evaluation of ice-jam disasters using gray systems theory:The case of Ningxia-Inner Mongolia reaches of the Yellow River[J]. Natural Hazards, 2014, 71(3):1419-1431.
[4] Wei B L, Xie N M, Hu A Q. Optimal solution for novel grey polynomial prediction model[J]. Applied Mathematical Modelling, 2018, 62:717-727.
[5] 徐宁, 党耀国. 特征自适应型GM(1,1)模型及对中国交通污染排放量的预测建模[J]. 系统工程理论与实践, 2018, 38(1):187-196.Xu N, Dang Y G. Characteristic adaptive GM(1,1) model and forecasting of Chinese traffic pollution emission[J]. Systems Engineering-Theory & Practice, 2018, 38(1):187-196.
[6] Kayacan E, Ulutas B, Kaynak O. Grey system theory-based models in time series prediction[J]. Expert Systems with Applications, 2010, 37(2):1784-1789.
[7] Liu S F, Xie N M. Four basic models of GM(1,1) and their suitable sequences[J]. Grey Systems:Theory and Application, 2015, 5(2):141-156.
[8] Xie N M, Liu S F. Discrete grey forecasting model and its optimization[J]. Applied Mathematical Modelling, 2009, 33(2):1173-1186.
[9] Cui J, Liu S F, Zeng B, et al. A novel grey forecasting model and its optimization[J]. Applied Mathematical Modelling, 2013, 37(6):4399-4406.
[10] Xie N M, Liu S F, Yang Y J, et al. On novel grey forecasting model based on non-homogeneous index sequence[J]. Applied Mathematical Modelling, 2013, 37(7):5059-5068.
[11] 姚天祥, 刘思峰. 改进的离散灰色预测模型[J]. 系统工程, 2007, 25(9):103-106. Yao T X, Liu S F. Improvement of a forecasting discrete GM(1,1)[J]. Systems Engineering, 2007, 25(9):103-106.
[12] 邓聚龙. 灰理论基础[M]. 武汉:华中科技大学出版社, 2002:300-310.Deng J L. Grey theory basis[M]. Wuhan:Huazhong University of Science & Technology Press, 2002:300-310.
[13] 钱吴永, 党耀国. 基于振荡序列的GM(1,1)模型[J]. 系统工程理论与实践, 2009, 29(3):149-154.Qian W Y, Dang Y G. GM(1,1) model based on oscillation sequences[J]. Systems Engineering-Theory & Practice, 2009, 29(3):149-154.
[14] 王正新, 党耀国, 裴玲玲. 基于GM(1,1)幂模型的振荡序列建模方法[J]. 系统工程与电子技术, 2011, 33(11):2440-2444.Wang Z X, Dang Y G, Pei L L. Modeling approach for oscillatory sequences based on GM(1,1) power model[J]. Systems Engineering and Electronics, 2011, 33(11):2440-2444.
[15] 王正新. 振荡型GM(1,1)幂模型及其应用[J]. 控制与决策, 2013, 28(10):1459-1464.Wang Z X. Oscillating GM(1,1) power model and its application[J]. Control and Decision, 2013, 28(10):1459-1464.
[16] 钱吴永, 党耀国, 刘思峰. 含时间幂次项的灰色GM(1,1,tα)模型及其应用[J]. 系统工程理论与实践, 2012, 32(10):2247-2252.Qian W Y, Dang Y G, Liu S F. Grey GM(1,1,tα) model with time power and its application[J]. Systems Engineering-Theory & Practice, 2012, 32(10):2247-2252.
[17] Mao S H, Chen Y, Xiao X P. City traffic flow prediction based on improved GM(1,1) model[J]. Journal of Grey System, 2012, 24(4):337-346.
[18] 罗党, 韦保磊. 灰色GMP(1,1,N)模型及其在冰凌灾害风险预测中的应用[J]. 系统工程理论与实践, 2017, 37(11):2929-2937.Luo D, Wei B L. Grey GMP(1,1,N) model and its application in risk prediction of ice-jam disaster[J]. Systems Engineering-Theory & Practice, 2017, 37(11):2929-2937.
[19] 罗党, 韦保磊. 一类离散灰色预测模型的统一处理方法及应用[J]. 系统工程理论与实践, 2019, 39(2):451-462.Luo D, Wei B L. A unified treatment approach for a class of discrete grey forecasting models and its application[J]. Systems Engineering-Theory & Practice, 2019, 39(2):451-462.
[20] Ma X, Hu Y S, Liu Z B. A novel kernel regularized nonhomogeneous grey model and its applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 48:51-62.
[21] Zeng B, Meng W, Tong M Y. A self-adaptive intelligence grey predictive model with alterable structure and its application[J]. Engineering Applications of Artificial Intelligence, 2016, 50:236-244.
[22] Wang J Z, Ma X L, Wu J, et al. Optimization models based on GM(1,1) and seasonal fluctuation for electricity demand forecasting[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):109-117.
[23] Wu L F, Gao X H, Xiao Y L, et al. Using grey Holt-Winters model to predict the air quality index for cities in China[J]. Natural Hazards, 2017, 88(2):1003-1012.
[24] Wang Z X, Li Q, Pei L L. Grey forecasting method of quarterly hydropower production in China based on a data grouping approach[J]. Applied Mathematical Modelling, 2017, 51:302-316.
[25] Xia M, Wong W K. A seasonal discrete grey forecasting model for fashion retailing[J]. Knowledge-Based Systems, 2014, 57(2):119-126.
[26] Xiao X P, Yang J W, Mao S H, et al. An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow[J]. Applied Mathematical Modelling, 2017, 51:386-404.
[27] Wang Z X, Li Q, Pei L L. A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors[J]. Energy, 2018, 154:522-534.
[28] Madsen K, Nielsen H B, Tingleff O. Methods for non-linear least squares problems[M]. 2nd ed. Konges Lyngby, Denmark:Informatics and Mathematical Modelling, Technical University of Denmark, 2004:20-29.
[29] Nielsen H B. Damping parameter in Marquardt's method[M]. Konges Lyngby, Denmark:Informatics and Mathematical Modelling, Technical University of Denmark, 1999:7-11.
[30] Fisher R A. Tests of significance in harmonic analysis[J]. Proceedings of the Royal Society A, Mathematical, Physical & Engineering Sciences, 1929, 125(796):54-59.
[31] 李原园, 梅锦山, 郦建强, 等. 干旱灾害风险评估与调控[M]. 北京:中国水利水电出版社, 2017:1-7.Li Y Y, Mei J S, Li J Q, et al. Risk assessment and regulation of drought disaster[M]. Beijing:China Water Power Press, 2017:1-7.

基金

国家自然科学基金(51979106);河南省科技攻关计划(182102310014);河南省高等学校重点科研项目(18A630030);河南省研究生教育优质课程(灰色系统理论:HNYJS2015KC02)
PDF(918 KB)

675

Accesses

0

Citation

Detail

段落导航
相关文章

/