基于Copula函数的齿轮箱剩余寿命预测方法

宋仁旺, 张岩, 石慧

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2466-2474.

PDF(1252 KB)
PDF(1252 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2466-2474. DOI: 10.12011/1000-6788-2019-0307-09
论文

基于Copula函数的齿轮箱剩余寿命预测方法

    宋仁旺, 张岩, 石慧
作者信息 +

Prediction method for the remaining useful life of gearbox based on copula function

    SONG Renwang, ZHANG Yan, SHI Hui
Author information +
文章历史 +

摘要

齿轮箱是风力发电机组的关键部件,对风力发电机的整体寿命有直接影响.针对齿轮箱的剩余寿命,提出了一种多退化量下的剩余寿命预测方法.首先,在分析齿轮箱寿命的影响因素基础上,选取齿轮箱的振动加速度和噪声作为退化量;其次,采用基于核估计和随机滤波理论的方法分别对齿轮箱的振动加速度和噪声进行建模,从而获得齿轮箱的剩余寿命概率密度函数,进而得到其边缘分布函数;再利用Copula函数表示齿轮箱的振动加速度和噪声之间的随机相关性,求得齿轮箱剩余寿命的联合分布函数,从而得到齿轮箱剩余寿命的联合概率密度函数,得到齿轮箱剩余寿命预测值;最后,提出基于赤池信息准则模型评价的Copula函数选择方法.通过齿轮箱的试验验证了该方法的有效性.

Abstract

The gearbox is a key component of the wind turbine and has a direct impact on the overall life of the wind turbine. Aiming at the remaining useful life of gearbox, a remaining useful life prediction method under multi-degenerate quantity is proposed. Firstly, on the basis of analyzing the influencing factors of gearbox life, the vibration acceleration and noise of gearbox are selected as the degradation quantity, and secondly, the vibration acceleration and noise of gearbox are modeled by means of kernel estimation and stochastic filtering theory respectively, so as to obtain the the remaining useful life probability density function of gearbox, and then obtain its edge distribution function. The copula function is used to represent the stochastic correlation between the vibration acceleration and the noise of the gearbox, and the joint distribution function of the remaining useful life of the gearbox is obtained, and the combined probability density function of the remaining useful life of the gearbox is obtained, and the remaining useful life prediction value of the gearbox is obtained. Finally, a copula function selection method based on red pool information criterion model evaluation is proposed. The effectiveness of this method is verified by the test of gearbox.

关键词

剩余寿命预测 / 多退化变量建模 / Copula函数

Key words

the remaining useful life prediction / multi-degenerate variable modeling / copula function

引用本文

导出引用
宋仁旺 , 张岩 , 石慧. 基于Copula函数的齿轮箱剩余寿命预测方法. 系统工程理论与实践, 2020, 40(9): 2466-2474 https://doi.org/10.12011/1000-6788-2019-0307-09
SONG Renwang , ZHANG Yan , SHI Hui. Prediction method for the remaining useful life of gearbox based on copula function. Systems Engineering - Theory & Practice, 2020, 40(9): 2466-2474 https://doi.org/10.12011/1000-6788-2019-0307-09
中图分类号: TP202.1   

参考文献

[1] Ramasso E, Gouriveau R. Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions[J]. IEEE Transactions on Reliability, 2014, 63(2):555-566.
[2] Janasak K M, Beshears R R. Diagnostics to prognostics-A product availability technology evolution[C]//Reliability & Maintainability Symposium, Piscataway:IEEE, 2007:113-118.
[3] Lin G, Jia Y, Sun L, et al. Notice of retraction remaining useful life prediction of gearbox based on a nonlinear state space model[C]//International Conference on Quality, 2013:124-146.
[4] 孙磊, 汤心刚, 张星辉,等. 基于随机滤波模型的齿轮箱剩余寿命预测研究[J]. 机械传动, 2011, 35(10):56-60.Sun L, Tang X G, Zhang X H, et al. Study of gearbox residual life prediction based on stochastic filtering modeling[J]. Mechanical Transmission, 2011, 35(10):56-60.
[5] Son K L, Fouladirad M, Barros A. Remaining useful lifetime estimation and noisy gamma deterioration process[J]. Reliability Engineering & System Safety, 2016, 149(12):76-87.
[6] 雷亚国, 林京, 何正嘉. 基于多传感器信息融合的行星齿轮箱故障诊断[C]//第十二届全国设备故障诊断学术会议论文集, 2010:35-41.Lei Y G, Lin J, He Z J. Fault diagnosis of planetary gearboxes based on multi-sensor information fusion[C]//Proceedings of the 12th National Conference on Equipment Fault Diagnosis, 2010:35-41.
[7] 张星辉, 康建设, 高存明,等. 基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J]. 振动与冲击, 2013, 32(15):20-25.Zhang X H, Kang J S, Gao C M, et al. Gearbox state identification and remaining useful life prediction based on MoG-HMM[J]. Journal of Vibration and Shock, 2013, 32(15):20-25.
[8] 郭鹏, David Infield, 杨锡运. 风电机组齿轮箱温度趋势状态监测及分析方法[J]. 中国电机工程学报, 2011, 31(32):129-136.Guo P, Infield D, Yang X Y. Wind turbine gearbox condition monitoring using temperature trend analysis[J]. Chinese Journal of Electrical Engineering, 2011, 31(32):129-136.
[9] 林腾蛟, 曹洪, 吕和生. 4级行星齿轮箱振动噪声预估及修形效果分析[J]. 重庆大学学报:自然科学版, 2018, 41(2):47-53.Lin T J, Cao H, Lü H S. Vibration noise prediction and tooth modification effect analysis of a four-stage planetary gearbox[J]. Journal of Chongqing University:Natural Science Edition, 2018, 41(2):47-53.
[10] 运红丽, 张涛, 宋小娜. 风电齿轮箱润滑状态监测与故障诊断系统开发[J]. 华电技术, 2018, 40(2):4-6.Yun H L, Zhang T, Song X N. Monitoring on lubrication condition of wind power gearbox and development of fault diagnosis system[J]. China Electric Technology, 2018, 40(2):4-6.
[11] 张宇. 考虑零件失效相关的风电齿轮箱寿命建模[D]. 兰州:兰州理工大学, 2014.Zhang Y. Life modeling of wind turbine gearbox considering part failure[D]. Lanzhou:Lanzhou University of Technology, 2014.
[12] Wu S, Zhang L, Zheng W, et al. A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents[J]. Journal of Natural Gas Science & Engineering, 2016, 34(23):139-158.
[13] 刘鑫, 贾云献, 田霞, 等. 基于SF-REM的齿轮箱剩余寿命预测方法研究[J]. 军械工程学院学报, 2014, 15(4):10-13.Liu X, Jia Y X, Tian X, et al. A study of gearbox residual life prediction method based on SF-REM model[J]. Journal of Armament Engineering College, 2014, 15(4):10-13.
[14] 张英波, 贾云献, 邱国栋, 等. 基于油液中金属浓度梯度特征的滤波剩余寿命预测模型[J]. 系统工程理论与实践, 2014, 34(6):35-42.Zhang Y B, Jia Y X, Qiu G D, et al. Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant[J]. Systems Engineering-Theory & Practice, 2014, 34(6):35-42.
[15] 邓世广, 周龙泉, 马亚伟, 等. 基于贝叶斯定理的地震危险性概率预测研究[J]. 中国地震, 2019, 35(1):1-13.Deng S G, Zhou L Q, Ma Y W, et al. Research on probability prediction of earthquake risk based on Bayesian theorem[J]. China Earthquake, 2019, 35(1):1-13.
[16] Si X S, Wang W, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems & Signal Processing, 2013, 35(1):219-237.
[17] Karra K, Mili L. Copula index for detecting dependence and monotonicity between stochastic signals[J]. Renewable Energy, 2018, 32(5):125-137.
[18] Wang Y, Ma H, Wang D, et al. A new method for wind speed forecasting based on copula theory[J]. Environmental Research, 2018, 160:365-371.
[19] Yu L, Li Y P, Huang G H, et al. A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties:A case study of the urban agglomeration of Beijing and Tianjin[J]. Applied Energy, 2018, 2(10):60-74.

基金

国家自然科学基金青年科学基金项目(61703297);山西省青年科学基金(201601D021065);校博士启动基金(20152022)
PDF(1252 KB)

704

Accesses

0

Citation

Detail

段落导航
相关文章

/