中图分类号:
TP202.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ramasso E, Gouriveau R. Remaining useful life estimation by classification of predictions based on a neuro-fuzzy system and theory of belief functions[J]. IEEE Transactions on Reliability, 2014, 63(2):555-566.
[2] Janasak K M, Beshears R R. Diagnostics to prognostics-A product availability technology evolution[C]//Reliability & Maintainability Symposium, Piscataway:IEEE, 2007:113-118.
[3] Lin G, Jia Y, Sun L, et al. Notice of retraction remaining useful life prediction of gearbox based on a nonlinear state space model[C]//International Conference on Quality, 2013:124-146.
[4] 孙磊, 汤心刚, 张星辉,等. 基于随机滤波模型的齿轮箱剩余寿命预测研究[J]. 机械传动, 2011, 35(10):56-60.Sun L, Tang X G, Zhang X H, et al. Study of gearbox residual life prediction based on stochastic filtering modeling[J]. Mechanical Transmission, 2011, 35(10):56-60.
[5] Son K L, Fouladirad M, Barros A. Remaining useful lifetime estimation and noisy gamma deterioration process[J]. Reliability Engineering & System Safety, 2016, 149(12):76-87.
[6] 雷亚国, 林京, 何正嘉. 基于多传感器信息融合的行星齿轮箱故障诊断[C]//第十二届全国设备故障诊断学术会议论文集, 2010:35-41.Lei Y G, Lin J, He Z J. Fault diagnosis of planetary gearboxes based on multi-sensor information fusion[C]//Proceedings of the 12th National Conference on Equipment Fault Diagnosis, 2010:35-41.
[7] 张星辉, 康建设, 高存明,等. 基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J]. 振动与冲击, 2013, 32(15):20-25.Zhang X H, Kang J S, Gao C M, et al. Gearbox state identification and remaining useful life prediction based on MoG-HMM[J]. Journal of Vibration and Shock, 2013, 32(15):20-25.
[8] 郭鹏, David Infield, 杨锡运. 风电机组齿轮箱温度趋势状态监测及分析方法[J]. 中国电机工程学报, 2011, 31(32):129-136.Guo P, Infield D, Yang X Y. Wind turbine gearbox condition monitoring using temperature trend analysis[J]. Chinese Journal of Electrical Engineering, 2011, 31(32):129-136.
[9] 林腾蛟, 曹洪, 吕和生. 4级行星齿轮箱振动噪声预估及修形效果分析[J]. 重庆大学学报:自然科学版, 2018, 41(2):47-53.Lin T J, Cao H, Lü H S. Vibration noise prediction and tooth modification effect analysis of a four-stage planetary gearbox[J]. Journal of Chongqing University:Natural Science Edition, 2018, 41(2):47-53.
[10] 运红丽, 张涛, 宋小娜. 风电齿轮箱润滑状态监测与故障诊断系统开发[J]. 华电技术, 2018, 40(2):4-6.Yun H L, Zhang T, Song X N. Monitoring on lubrication condition of wind power gearbox and development of fault diagnosis system[J]. China Electric Technology, 2018, 40(2):4-6.
[11] 张宇. 考虑零件失效相关的风电齿轮箱寿命建模[D]. 兰州:兰州理工大学, 2014.Zhang Y. Life modeling of wind turbine gearbox considering part failure[D]. Lanzhou:Lanzhou University of Technology, 2014.
[12] Wu S, Zhang L, Zheng W, et al. A DBN-based risk assessment model for prediction and diagnosis of offshore drilling incidents[J]. Journal of Natural Gas Science & Engineering, 2016, 34(23):139-158.
[13] 刘鑫, 贾云献, 田霞, 等. 基于SF-REM的齿轮箱剩余寿命预测方法研究[J]. 军械工程学院学报, 2014, 15(4):10-13.Liu X, Jia Y X, Tian X, et al. A study of gearbox residual life prediction method based on SF-REM model[J]. Journal of Armament Engineering College, 2014, 15(4):10-13.
[14] 张英波, 贾云献, 邱国栋, 等. 基于油液中金属浓度梯度特征的滤波剩余寿命预测模型[J]. 系统工程理论与实践, 2014, 34(6):35-42.Zhang Y B, Jia Y X, Qiu G D, et al. Stochastic filtering residual useful life prediction model based on metal concentration gradient in lubricant[J]. Systems Engineering-Theory & Practice, 2014, 34(6):35-42.
[15] 邓世广, 周龙泉, 马亚伟, 等. 基于贝叶斯定理的地震危险性概率预测研究[J]. 中国地震, 2019, 35(1):1-13.Deng S G, Zhou L Q, Ma Y W, et al. Research on probability prediction of earthquake risk based on Bayesian theorem[J]. China Earthquake, 2019, 35(1):1-13.
[16] Si X S, Wang W, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems & Signal Processing, 2013, 35(1):219-237.
[17] Karra K, Mili L. Copula index for detecting dependence and monotonicity between stochastic signals[J]. Renewable Energy, 2018, 32(5):125-137.
[18] Wang Y, Ma H, Wang D, et al. A new method for wind speed forecasting based on copula theory[J]. Environmental Research, 2018, 160:365-371.
[19] Yu L, Li Y P, Huang G H, et al. A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties:A case study of the urban agglomeration of Beijing and Tianjin[J]. Applied Energy, 2018, 2(10):60-74.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金青年科学基金项目(61703297);山西省青年科学基金(201601D021065);校博士启动基金(20152022)
{{custom_fund}}