奈特不确定下考虑逆向选择的最优动态契约设计

费晨, 余鹏, 费为银, 杨晓光, 闫理坦

系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2302-2313.

PDF(907 KB)
PDF(907 KB)
系统工程理论与实践 ›› 2020, Vol. 40 ›› Issue (9) : 2302-2313. DOI: 10.12011/1000-6788-2018-1954-12
论文

奈特不确定下考虑逆向选择的最优动态契约设计

    费晨2, 余鹏1, 费为银1, 杨晓光3, 闫理坦2
作者信息 +

Contract design with Knightian uncertainty and adverse selection

    FEI Chen2, YU Peng1, FEI Weiyin1, YANG Xiaoguang3, YAN Litan2
Author information +
文章历史 +

摘要

现实世界中不确定可以分成概率不确定和奈特(Knight)不确定.本文从奈特不确定框架研究连续时间下面临道德风险的委托-代理问题,试图分析低道德水平代理人逆向选择对高道德水平代理人延续价值和动态最优契约执行过程的影响.首先,基于非线性期望理论,利用G-布朗运动刻画契约项目盈利的动力学方程,进而定义了委托人和代理人的期望效用.其次,用带G-布朗运动驱动的随机微方程刻画了高道德水平代理人和低道德水平代理人价值过程.并且,利用次线性期望下的最优性原理,推导出高道德水平代理人预期效用值函数所满足的哈密尔顿-雅可比-贝尔曼(HJB)方程,在低道德水平代理人逆向选择下给出高道德水平代理人获得的最优报酬,同时得到低道德水平与高道德水平两类代理人最优努力水平的隐式表达式.最后,通过Matlab数值模拟,阐释了奈特不确定对委托人和不同类型代理人的策略影响.模拟分析结果表明,低道德水平代理人的逆向选择将会直接影响高道德水平代理人的契约支付,进而会影响契约有效性;而作为造成低道德水平代理人逆向选择的重要原因,奈特不确定也使得委托代理双方的决策更加谨慎.

Abstract

This paper studies a principal-agent problem in continuous time with ambiguity based on that the uncertainty of probabilistic model is nature. We put an emphasis on the effects of the bad moral agent's adverse selection on the contract and the continuation value of the good moral agent. Firstly, we establish the dynamic equations of the bad moral agent's continuation value utility as well as the good moral agent's total utility. Then, by the theory and methods of stochastic optimal control under the premise of sublinear expectation, we deduce the corresponding Hamilton-Jacobi-Bellman (HJB) equation of the good moral agent's value function, and the implicit expression of the optimal principal's payment. Finally, the numerical simulations are provided for explaining the effects of Knightian uncertainty on the optimal dynamic contract. The results show that, the bad moral agent's adverse selection would reduce the optimal payment of the good moral agent directly, and then it would influence the availability of contract. Moreover, as the important reason of the adverse selection, the Knightian uncertainty would make the principal-agent decisions more cautious.

关键词

次线性期望 / 道德风险 / 逆向选择 / 诱惑价值过程 / 不完全契约理论 / 奈特不确定

Key words

sublinear expectation / moral hazard / adverse selection / temptation value process / incomplete contract theory / Knightian uncertainty

引用本文

导出引用
费晨 , 余鹏 , 费为银 , 杨晓光 , 闫理坦. 奈特不确定下考虑逆向选择的最优动态契约设计. 系统工程理论与实践, 2020, 40(9): 2302-2313 https://doi.org/10.12011/1000-6788-2018-1954-12
FEI Chen , YU Peng , FEI Weiyin , YANG Xiaoguang , YAN Litan. Contract design with Knightian uncertainty and adverse selection. Systems Engineering - Theory & Practice, 2020, 40(9): 2302-2313 https://doi.org/10.12011/1000-6788-2018-1954-12
中图分类号: F062.5    O211.63   

参考文献

[1] 杨瑞龙, 聂辉华. 不完全契约理论:一个综述[J]. 经济研究, 2006, 41(2):104-115.Yang R L, Nie H H. Incomplete contracting theory:A survey[J]. Economic Research Journal, 2006, 41(2):104-115.
[2] Shavell S. Damage measures for breach of contract[J]. Bell Journal of Economics, 1980, 11(2):466-490.
[3] Williamson O E. The mechanism of governance[J]. Administrative Science Quarterly, 1996, 44(1):799-802.
[4] Moore J, Repullo R. Subgame perfect implementation[J]. Econometrica, 1988, 56(5):1191-1220.
[5] Schwartz A. The default rule paradigm and the limits of contract law[J]. Southern California Interdisciplinary Law Journal, 1994, 3:389-419.
[6] Kahneman D, Tversky A. Prospect theory:An analysis of decision under risk[J]. Econometrica, 1979, 47(2):263-292.
[7] Tversky A, Kahneman D. Loss aversion in riskless choice:A reference-dependent model[J]. Quarterly Journal of Economics, 1991, 106(4):1039-1061.
[8] Tversky A, Kahneman D. Advances in prospect theory:Cumulative representation under certainty[J]. Journal of Risk and Uncertainty, 1992, 5(4):297-323.
[9] Grossman S J, Hart O D. The costs and benefits of ownership:A theory of vertical and lateral integration[J]. Journal of Political Economy, 1986, 94(4):691-719.
[10] Hart O, Moore J. Property rights and the nature of the firm[J]. Journal of Political Economy, 1990, 98(6):1119-1158.
[11] Wang C. Termination of dynamic contracts in an equilibrium labor market model[J]. Journal of Economic Theory, 2011, 146(1):74-110.
[12] Miao J, Rivera A. Robust contracts in continuous time[J]. Econometrica, 2016, 84(4):1405-1440.
[13] He Z G. Optimal executive compensation when firm size follows geometric Brownian motion[J]. Review of Financial Studies, 2009, 22(2):859-892.
[14] Bolton P, Wang N, Yang J Q. Optimal contracting, corporate finance, and valuation with inalienable human capital[J]. Journal of Finance, 2019, 74(3):1363-1429.
[15] 费为银, 张繁红, 杨晓光. 通胀对高管的股权激励和工作努力策略的影响[J]. 中国管理科学. doi:10.16381/j.cnki.issn1003-207x.2018.0741. Fei W Y, Zhang F H, Yang X G. The impact of inflation on executive's equity incentive and work effort[J]. Chinese Journal of Management Science. doi:10.16381/j.cnki.issn1003-207x.2018.0741.
[16] Akerlof G. The market for ‘lemons’:Quality uncertainty and the market mechanism[J]. Quarterly Journal of Economics, 1970, 84(3):488-500.
[17] Knight F H. Risk, uncertainty and profit[M]. Houghton Mifflin Company, 1921.
[18] 彭实戈. 非线性期望的理论、方法及意义[J]. 中国科学:数学, 2017, 47(10):1223-1254.Peng S G. Theory, methods and meaning of nonlinear expectation theory[J]. Scientia Sinica Mathematica, 2017, 47(10):1223-1254.
[19] Peng S. Nonlinear expectations and stochastic calculus under uncertainty[M]. Berlin:Springer, 2019.
[20] Chen Z J, Epstein L G. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70(4):1403-1443.
[21] Fei W Y. Optimal consumption and portfolio choice with ambiguity and anticipation[J]. Information Sciences, 2007, 117:5179-5190.
[22] Fei W Y. Optimal portfolio choice based on α-MEU under ambiguity[J]. Stochastic Models, 2009, 25(3):455-482.
[23] 费为银, 陈超, 梁勇. Knight不确定下考虑负效用的消费和投资问题研究[J]. 应用概率统计, 2013, 29(1):53-63.Fei W Y, Chen C, Liang Y. Optimal consumption-portfolio and retirement problem with disutility under Knightian uncertainty[J]. Chinese Journal of Applied Probability and Statistics, 2013, 29(1):53-63.
[24] 费为银, 李钰, 石学芹, 等. 奈特不确定和部分信息下的最优交易策略[J]. 应用数学学报, 2014, 37(2):193-204. Fei W Y, Li Y, Shi X Q, et al. Optimal trading strategy under Knightian uncertainty and partial information[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(2):193-204.
[25] 费为银, 夏登峰, 唐仕冰. Knight不确定与随机汇率下外商投资决策[J]. 管理科学学报, 2016, 19(6):125-135.Fei W Y, Xia D F, Tang S B. On study of a foreign investor's investment with random exchange rate under Knightian uncertainty[J]. Journal of Management Sciences in China, 2016, 19(6):125-135.
[26] 王春峰, 余思婧, 房振明, 等. 中国证券市场Knight不确定性度量及资产定价研究[J]. 系统工程理论与实践, 2015, 35(5):1116-1122.Wang C F, Yu S J, Fang Z M, et al. Measuring Chinese stock Knightian uncertainty and its asset pricing analysis[J]. Systems Engineering-Theory & Practice, 2015, 35(5):1116-1122.
[27] 李伟, 韩立岩. Knight不确定条件下的模糊二叉树期权定价模型[J]. 中国管理科学, 2009, 17(6):9-16.Li W, Han L Y. The fuzzy binomial option pricing model under Knightian uncertainty[J]. Chinese Journal of Management Science, 2009, 17(6):9-16.
[28] 韩立岩, 泮敏. 基于奈特不确定性随机波动率期权定价[J]. 系统工程理论与实践, 2012, 32(6):1175-1183. Han L Y, Pan M. Knightian uncertainty based option pricing with stochastic volotility[J]. Systems Engineering-Theory & Practice, 2012, 32(6):1175-1183.
[29] 何俊勇, 张顺明. 在相关系数暧昧环境下的市场微观结构研究[J]. 中国管理科学, 2018, 26(4):139-154.He J Y, Zhang S M. Market microstructure under ambiguity of correlation[J]. Chinese Journal of Management Science, 2018, 26(4):139-154.
[30] 宫晓琳, 陈增敬, 张晓朴, 等. 随机极限正态分布与审慎风险监测[J]. 经济研究, 2014, 49(9):135-148.Gong X L, Chen Z J, Zhang X P, et al. Measuring and managing risk with random limit normal distribution[J]. Economic Research Journal, 2014, 49(9):135-148.
[31] 宫晓琳, 杨淑振, 胡金焱, 等. 非线性期望理论与基于模型不确定性的风险度量[J]. 经济研究, 2015, 50(11):133-147.Gong X L, Yang S Z, Hu J Y, et al. Non-linear expectation theory and risk management based on mode ambiguity[J]. Economic Research Journal, 2015, 50(11):133-147.
[32] 宫晓琳, 彭实戈, 杨淑振, 等. 基于不确定性分布的金融风险审慎管理研究[J]. 经济研究, 2019, 54(7):64-77.Gong X L, Peng S G, Yang S Z, et al. Prudential management of financial risk with uncertain probability distribution[J]. Economic Research Journal, 2019, 54(7):64-77.
[33] 高咏玲. Knight不确定环境下供应商的乐观度对定价决策的影响[J]. 系统工程理论与实践, 2017, 37(9):2297-2305.Gao Y L. The impact of the supplier's optimism levels on pricing decision under Knightian uncertainty[J]. Systems Engineering-Theory & Practice, 2017, 37(9):2297-2305.
[34] 费为银, 杨珊珊, 梁勇. Knight不确定下单边有限承诺连续时间契约问题[J]. 中国科学技术大学学报, 2020, 50(2):110-119. Fei W Y, Yang S S, Liang Y. One-sided continuous-time contracting problems with limited commitment based under Knightian Uncertainty[J]. Journal of University of Science and Technology of China, 2020, 50(2):110-119.
[35] 费晨, 余鹏, 费为银, 等. 道德风险下带有Knight不确定的最优动态契约设计[J]. 管理科学学报, 2019, 22(6):86-96. Fei C, Yu P, Fei W Y, et al. Dynamics of contract design with moral hazards under Knightian uncertainty[J]. Journal of Management Sciences in China, 2019, 22(6):86-96.
[36] Sannikov Y. Games with imperfectly observable actions in continuous time[J]. Econometrica, 2007, 75(5):1285-1329.
[37] Sannikov Y. A continuous-time version of the principal-agent problem[J]. Review of Economic Studies, 2008, 75(3):957-984.
[38] Cvitanić J, Wan X H, Yang H L. Dynamics of contract design with screening[J]. Management Science, 2013, 59(5):1229-1244.
[39] Abreu D, Pearce D, Stacchetti E. Toward a theory of discounted repeated games with imperfect monitoring[J]. Econometrica, 1990, 58(5):1041-1063.
[40] Fei W Y, Fei C. Optimal stochastic control and optimal consumption and portfolio with G-Brownian motion[EB/OL]. arXiv:1309.0209v1, 2013.
[41] Allais M. Le comportement de I'home rationel devant le risqué:Critique des postulats et axioms de I'ecole americaine[J]. Ecomometrica, 1953, 21(4):503-546.

基金

国家自然科学基金(71571001,11971101)
PDF(907 KB)

790

Accesses

0

Citation

Detail

段落导航
相关文章

/