不完全信息下或有资本的定价与债券信用价差研究

赵志明, 李莎莎

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (12) : 3010-3020.

PDF(1087 KB)
PDF(1087 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (12) : 3010-3020. DOI: 10.12011/1000-6788(2018)12-3010-11
论文

不完全信息下或有资本的定价与债券信用价差研究

    赵志明, 李莎莎
作者信息 +

The study of contingent capital pricing and credit spreads of bonds under incomplete information

    ZHAO Zhiming, LI Shasha
Author information +
文章历史 +

摘要

本文考虑两类不完全信息:信息滞后和信息不对称,将或有资本引入分析框架,应用风险中性定价原理和最优停时理论,研究公司证券的定价与债券信用价差问题.数值结果表明:或有资本可以显著降低信息滞后情形下的公司破产成本,提高公司总价值,减少社会福利损失;或有资本可以提升股权价值、降低债券的信用价差,增强公司的抗风险能力.进一步研究发现,对于1年期的短期债券而言,或有资本减少信息不对称下债券的信用价差幅度明显大于信息滞后情形.

Abstract

This paper considers two kinds of incomplete information:Delayed information and asymmetric information. We introduce the contingent capital to analytical framework and use the optimal stopping time and stochastic analysis method to investigate the value of securities and the credit spreads of the bonds. By numerical analysis, we show that the contingent capital can significantly mitigate the firm's bankruptcy cost, which also improves the total value of the company and reduces the loss of social welfare under the situation of delayed information. At the same time, contingent capital can increase the equity value and reduce the credit spreads of the bonds, enhancing the firm's anti-risk ability. Further studies show that for short-term bonds within a year, contingent capital reduce clearly more credit spreads under the situation of asymmetric information than the situation of delayed information.

关键词

不完全信息 / 或有资本 / 双指数跳扩散过程 / 信用价差

Key words

incomplete information / contingent capital / double exponential jump diffusion process / credit spreads

引用本文

导出引用
赵志明 , 李莎莎. 不完全信息下或有资本的定价与债券信用价差研究. 系统工程理论与实践, 2018, 38(12): 3010-3020 https://doi.org/10.12011/1000-6788(2018)12-3010-11
ZHAO Zhiming , LI Shasha. The study of contingent capital pricing and credit spreads of bonds under incomplete information. Systems Engineering - Theory & Practice, 2018, 38(12): 3010-3020 https://doi.org/10.12011/1000-6788(2018)12-3010-11
中图分类号: F830   

参考文献

[1] Basel Committee. Basel Ⅲ:Finalising post-crisis reforms[J]. Basel Committee on Banking Supervision, Basel, 2017.
[2] Flannery M J. No pain, no gain? Effecting market discipline via ‘reverse convertible debentures’[J]. Effecting Market Discipline Via ‘Reverse Convertible Debentures’, 2002.
[3] Glasserman P, Nouri B. Contingent capital with a capital-ratio trigger[J]. Management Science, 2012, 58(10):1816-1833.
[4] Mcdonald R L. Contingent capital with a dual price trigger[J]. Journal of Financial Stability, 2013, 9(2):230-241.
[5] Sundaresan S, Wang Z. On the design of contingent capital with a market trigger[J]. The Journal of Finance, 2015, 70(2):881-920.
[6] Glasserman P, Nouri B. Market-triggered changes in capital structure:Equilibrium price Dynamics[J]. Econometrica, 2016, 84(6):2113-2153.
[7] 秦学志, 胡友群, 石玉山. 含股权回售与赎回条款的或有可转债定价研究[J]. 管理科学学报, 2016, 19(7):102-114.Qin X Z, Hu Y Q, Shi Y S. Pricing of share-putable & callable CoCos[J]. Journal of Management Sciences in China, 2016, 19(7):102-114.
[8] Albul B, Jaffee D, Tchistyi A. Contingent convertible bonds and capital structure decisions[C]//Society for Economic Dynamics, 2013:382-388.
[9] Leland H E. Corporate debt value, bond covenants, and optimal capital structure[J]. The Journal of Finance, 1994, 49(4):1213-1252.
[10] Luo P, Yang Z. Real options and contingent convertibles with regime switching[J]. Journal of Economic Dynamics and Control, 2017, 75:122-135.
[11] Chen N, Glasserman P, Nouri B, et al. Contingent capital, tail risk, and debt-induced collapse[J]. The Review of Financial Studies, 2017, 30(11):3921-3969.
[12] Armantier O, Ghysels E, Sarkar A, et al. Discount window stigma during the 2007-2008 financial crisis[J]. Journal of Financial Economics, 2015, 118(2):317-335.
[13] Choi J. Credit risk model with lagged information[J]. Journal of Derivatives, 2008, 16(2):85-93.
[14] Guo X, Jarrow R A, Zeng Y. Credit risk models with incomplete information[J]. Mathematics of Operations Research, 2009, 34(2):320-332.
[15] 郁玉环. 基于公司治理视角的信息披露影响因素分析[J]. 数量经济技术经济研究, 2012(8):64-78.Yu Y H. Analysis on the influence factor of information disclosure from corporate governance perspective[J]. The Journal of Quantitative & Technical Economics, 2012(8):64-78.
[16] 吴建华, 王新军, 张颖. 企业信息披露滞后对债券违约风险影响的量化分析[J]. 金融经济学研究, 2014(6):17-28.Wu J H, Wang X J, Zhang Y. The quantitative analysis for the impact of corporate information disclosure lags on default risk of bonds[J]. Journal of Finance and Economics, 2014(6):17-28.
[17] Duffie D, Lando D. Term structures of credit spreads with incomplete accounting information[J]. Econometrica, 2001, 69(3):633-664.
[18] Giesecke K. Default and information[J]. Journal of Economic Dynamics and Control, 2006, 30(11):2281-2303.
[19] Lindset S, Lund A C, Persson S A. Credit risk and asymmetric information:A simplified approach[J]. Journal of Economic Dynamics and Control, 2014, 39:98-112.
[20] 庞素琳, 刘永清, 徐建闽,等. 基于信息不对称的银行信贷风险决策机制及分析(Ⅱ)——信贷风险决策机制[J]. 系统工程理论与实践, 2001, 21(5):80-83.Pang S L, Liu Y Q, Xu J M, et al. Credit risky decision mechanism and analysis for a bank based on information asymmetry(Ⅱ)——Credit risky decision mechanism[J]. Systems Engineering——Theory & Practice, 2001, 21(5):80-83.
[21] 孙庆文, 张琼琼, 仇静莉,等. 基于不同信息获取量的赊销决策风险度判别模型[J]. 系统工程理论与实践, 2012, 32(1):41-48.Sun Q W, Zhang Q Q, Chou J L, et al. Discrimination model of account sale decision-making risk degrees on the basis of different information acquisition degrees[J]. Systems Engineering——Theory & Practice, 2012, 32(1):41-48.
[22] 王宗润, 万源沅, 周艳菊. 隐性存款保险下银行信息披露与风险承担[J]. 管理科学学报, 2015, 18(4):84-97.Wang Z R, Wan Y Y, Zhou Y J. Relationship between bank information disclosure and bank risk-taking under implicit deposit insurance system[J]. Journal of Management Sciences in China, 2015, 18(4):84-97.
[23] 罗鹏飞, 杨招军, 张勇. 成熟型企业家的融资策略与道德风险及债务积压问题[J]. 系统工程理论与实践, 2017, 37(3):580-588.Luo P F, Yang Z J, Zhang Y. Financing policy, moral hazard and debt overhang with sophisticated entrepreneur[J]. Systems Engineering——Theory & Practice, 2017, 37(3):580-588.
[24] Kou S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.
[25] 郭桂霞, 沈婷. 或有资本的最优触发水平与转换比率——基于信息不对称的视角[J]. 浙江社会科学, 2015(11):21-29.Guo G X, Shen T. The optimal trigger level and conversion ratio of contingent capital:From the perspective of asymmetric information[J]. Zhejiang Social Sciences, 2015(11):21-29.
[26] Kou S G, Wang H. First passage times of a jump diffusion process[J]. Advances in Applied Probability, 2003, 35(2):504-531.
[27] Koziol C, Lawrenz J. Contingent convertibles. Solving or seeding the next banking crisis?[J]. Journal of Banking & Finance, 2012, 36(1):90-104.
[28] Musiela M, Rutkowski M. Martingale methods in financial modeling[M]. Berlin Heidelberg:Springer Verlag, 1997.

基金

国家自然科学基金(71801185);湘潭大学博士科研启动项目(KZ08069)
PDF(1087 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/