企业应急物资轮换更新行为与政府监管博弈分析

张琳, 田军, 党创寅, 冯英杰

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2611-2619.

PDF(724 KB)
PDF(724 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2611-2619. DOI: 10.12011/1000-6788(2018)10-2611-09
论文

企业应急物资轮换更新行为与政府监管博弈分析

    张琳1,2, 田军1, 党创寅2, 冯英杰2
作者信息 +

Game analysis of enterprises' replacement of emergency supplies and government's monitoring

    ZHANG Lin1,2, TIAN Jun1, DANG Chuangyin2, FENG Yingjie2
Author information +
文章历史 +

摘要

政府作为社会安全和社会福利保障的责任者,需要监管企业合规储备和轮换更新应急物资与设备的行为,但常常因为受制于企业储备信息不透明而导致监管效果不理想.本文针对应急物资周期性轮换更新这一敏感问题,建立了政府和企业的博弈模型,分析了一类质量或性能随时间下降的应急物资和设备按期轮换更新行为的监管策略,采用基于经验学习的强化学习算法求得政企博弈均衡解.算例分析结果验证了经验学习方法解决这一类问题(道德风险问题)的有效性.通过对比分析不同社会损失水平下的企业轮换更新行为和政府监管模式,进一步提出了相应的应对措施,从而对于这一问题的有效解决,提供了较好的管理启示.

Abstract

Government, who has a primary stake in social safety and welfare, undertakes the task of monitoring enterprises to make sure that they reserve and replace emergency supplies and equipment as required. Nevertheless, the reality is unsatisfactory, which is caused by the hidden information about the reserves' quality and performance. This paper considers a kind of emergency supplies and equipment that are needed to be replaced periodically to guarantee their usability and availability. A government-enterprise game model is established to analyze the enterprise's shirking behaviors and the government's monitoring strategies. The experience based equilibria are generated from a reinforcement learning algorithm. Results demonstrate the effectiveness of utilizing the experience-learning method to solve this kind of moral hazard problem. This study further puts forward managerial implications by analyzing enterprise's replacement strategies and government's monitoring patterns when the enterprise faces different levels of social losses.

关键词

应急物资 / 轮换更新 / 质量监管 / 博弈均衡 / 强化学习

Key words

emergency supplies / replacement / quality monitoring / game equilibria / reinforcement learning

引用本文

导出引用
张琳 , 田军 , 党创寅 , 冯英杰. 企业应急物资轮换更新行为与政府监管博弈分析. 系统工程理论与实践, 2018, 38(10): 2611-2619 https://doi.org/10.12011/1000-6788(2018)10-2611-09
ZHANG Lin , TIAN Jun , DANG Chuangyin , FENG Yingjie. Game analysis of enterprises' replacement of emergency supplies and government's monitoring. Systems Engineering - Theory & Practice, 2018, 38(10): 2611-2619 https://doi.org/10.12011/1000-6788(2018)10-2611-09
中图分类号: F224.9   

参考文献

[1] 谭智丹. 应急物资, 你准备好了么?[J]. 石油石化物资采购, 2014(2):14-15.
[2] 李常洪, 李铁, 吴美琴, 等. 基于多Agent交互的监督问题仿真研究[J]. 管理学报, 2008, 5(6):807-812. Li C H, Li T, Wu M Q, et al. Supervision-based multi-agent simulation[J]. Chinese Journal of Management, 2008, 5(6):807-812.
[3] Bolton P, Dewatripont M. Contract theory[M]. Cambridge:MIT press, 2005.
[4] Laffont J J, Martimort D. The theory of incentives:The principal-agent model[M]. Princeton:Princeton University Press, 2009.
[5] Esteve-González P. Moral hazard in repeated procurement of services[J]. International Journal of Industrial Organization, 2016, 48:244-269.
[6] Páez-Pérez D, Sánchez-Silva M. A dynamic principal-agent framework for modeling the performance of infrastructure[J]. European Journal of Operational Research, 2016, 254(2):576-594.
[7] 徐雨森, 秦曦, 李家波, 等. 企业社会责任履行与政府监管的博弈分析[J]. 现代管理科学, 2015(7):100-102.
[8] 浦徐进, 吴亚, 路璐, 等. 企业生产行为和官员监管行为的演化博弈模型及仿真分析[J]. 中国管理科学, 2013, 21(SI):390-396. Pu X J, Wu Y, Lu L, et al. The analysis of evolution game model and simulation between the productive behavior of the firms and the supervision of the officials[J]. Chinese Journal of Management Science, 2013, 21(SI):390-396.
[9] 曹裕, 俞传艳, 万光羽. 政府参与下食品企业监管博弈研究[J]. 系统工程理论与实践, 2017, 37(1):140-150. Cao Y, Yu C Y, Wan G Y. Food company regulation game research under government participation[J]. Systems Engineering-Theory & Practice, 2017, 37(1):140-150.
[10] 张艳楠, 孙绍荣. 基于Stackelberg博弈模型的化工企业安全生产管理机制治理研究[J]. 中国管理科学, 2016, 24(3):159-168. Zhang Y N, Sun S R. Research on safety production management mechanism in enterprise based on Stackelberg game model[J]. Chinese Journal of Management Science, 2016, 24(3):159-168.
[11] 吴军, 毕研林, 李健, 等. 不对称信息下基于委托代理模型的地沟油监管政策研究[J]. 系统工程理论与实践, 2016, 36(10):2610-2617. Wu J, Bi Y L, Li J, et al. Regulatory policy for gutter oil based on principal-agent model under asymmetric information[J]. Systems Engineering-Theory & Practice, 2016, 36(10):2610-2617.
[12] 吴瑞明, 胡代平, 沈惠璋. 流域污染治理中的演化博弈稳定性分析[J]. 系统管理学报, 2013, 22(6):797-801. Wu R M, Hu D P, Shen H Z. Stability analysis of the evolutionary game of river valley's pollution treatment[J]. Journal of Systems & Management, 2013, 22(6):797-801.
[13] 于涛, 刘长玉. 政府与第三方在产品质量监管中的演化博弈分析及仿真研究[J]. 中国管理科学, 2016, 24(6):90-96. Yu T, Liu C Y. The analysis of evolution game model and simulation between governments and the third-party in product quality regulation[J]. Chinese Journal of Management Science, 2016, 24(6):90-96.
[14] 杨智, 祁超. 基于强化学习的多成品率衰变设备预防维修策略[J]. 系统工程理论与实践, 2013, 33(7):1647-1653. Yang Z, Qi C. Preventive maintenance of a multi-yield deteriorating machine:using reinforcement learning[J]. Systems Engineering-Theory & Practice, 2013, 33(7):1647-1653.
[15] 邵校, 陈志祥, 伏开放. 考虑产品合格率衰变的设备维修与生产决策[J]. 工业工程与管理, 2017, 22(3):7-15. Shao X, Chen Z X, Fu K F. Equipment maintenance and production decision with degeneration of product qualified rate[J]. Industrial Engineering and Management, 2017, 22(3):7-15.
[16] 王潇, 王红卫, 祁超. 基于多Agent强化学习的流水线维护策略[J]. 系统工程学报, 2013, 28(5):702-708. Wang X, Wang H W, Qi C. Maintenance policies for flow line based on multi-agent reinforcement learning[J]. Journal of Systems Engineering, 2013, 28(5):702-708.
[17] Fershtman C, Pakes A. Dynamic games with asymmetric information:A framework for empirical work[J]. The Quarterly Journal of Economics, 2012, 127(4):1611-1661.
[18] Asker J, Fershtman C, Jeon J, et al. The competitive effects of information sharing[R]. Cambridge:National Bureau of Economic Research, 2016.
[19] Pakes A. Methodological issues in analyzing market dynamics[M]//Advances in Dynamic and Evolutionary Games, Cham:Birkhäuser, 2016:43-75.
[20] Pakes A. Empirical tools and competition analysis:Past progress and current problems[J]. International Journal of Industrial Organization, 2017, 53:241-266.
[21] 吴军, 王丹, 李健, 等. 基于强化学习的危化品运输路径选择博弈分析[J]. 系统工程理论与实践, 2015, 35(2):388-393. Wu J, Wang D, Li J, et al. Game analysis of hazardous chemicals transport route selection based on reinforcement learning-model[J]. Systems Engineering-Theory & Practice, 2015, 35(2):388-393.
[22] 黄彬彬, 刘青, 胡振鹏, 等. 基于强化学习的农田水利设施管理进化博弈分析[J]. 系统工程理论与实践, 2013, 33(12):3231-3236.Huang B B, Liu Q, Hu Z P, et al. Evolutionary game analysis of irrigation infrastructures management based on reinforcement learning-model[J]. Systems Engineering-Theory & Practice, 2013, 33(12):3231-3236.
[23] Piskorski T, Westerfield M M. Optimal dynamic contracts with moral hazard and costly monitoring[J]. Journal of Economic Theory, 2016, 166:242-281.

基金

国家自然科学基金重大项目(71390331);国家自然科学基金(71171157)
PDF(724 KB)

551

Accesses

0

Citation

Detail

段落导航
相关文章

/