中国高耗能行业碳排放因素分解与达峰路径研究

杨冕, 卢昕, 段宏波

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2501-2511.

PDF(1014 KB)
PDF(1014 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2501-2511. DOI: 10.12011/1000-6788(2018)10-2501-11
论文

中国高耗能行业碳排放因素分解与达峰路径研究

    杨冕1,2,3, 卢昕2, 段宏波4
作者信息 +

Analysis on the determinants and peaking paths of CO2 emissions in China's high energy-consuming industries

    YANG Mian1,2,3, LU Xin2, DUAN Hongbo4
Author information +
文章历史 +

摘要

促进高耗能行业碳减排是实现我国二氧化碳排放总量于2030年之前达峰的必经之路.通过将能源增强型技术进步和二氧化碳(CO2)排放共同纳入传统的经济增长分析框架,构建了碳排放影响因素的理论分析模型,将我国六大高耗能行业碳排放增长率的变动分解为规模效应、能源结构效应、要素替代效应和能源技术进步效应四个部分;并以此为基础,采用情景分析方法对2030年之前高耗能行业碳排放达峰路径进行探索.结果显示:1)对所有行业而言,规模效应是促进碳排放持续增加的主要因素,且该作用在"十五"时期表现得最为突出;相反,能源技术进步效应和要素替代效应对行业碳排放的增加均形成了一定程度的抑制;能源结构效应对碳减排的影响较为微弱且在方向上存在着行业差异.2)对于化学原料及制品、非金属制品、黑色金属加工、有色金属加工四个行业而言,能源技术进步效应对碳排放的抑制作用最为显著,尽管该效应的作用强度在时序维度上总体呈现下降趋势;与之相比,石油加工、电力生产供应两行业的碳减排主要依赖要素替代效应.3)在高排放情景下,高耗能行业碳排放总量持续快速增长,难以在2030年之前达峰;而在中排放和低排放情景下,六大行业的碳排放将分别于2023年、2017年前后达峰.

Abstract

Reducing the CO2 emissions of China's high energy-consuming industry is one of the most important prerequisites in achieving the target of peaking its total CO2 before 2030. In this paper, we build a theoretical model on identifying the determinants of CO2 emissions by incorporating the energy-augmenting technical progress in the analytical framework. Based on this work, the growth rates of CO2 emissions in China's six high energy-consuming industries are decomposed into four aspects including energy mix effect, scale effect, factor substitution effect, and energy-saving technical progress effect; and the peak paths of each industry's CO2 emissions are also studied using scenario analysis method. The results indicate that:1) the scale effect plays a dominant role in increasing the CO2 emissions for all the industries, especially during the tenth five-year plan; on the contrary, energy-saving technical progress effect and factor substitution effect have limited the increase of industrial CO2 emissions to a certain extent; the energy mix effect is extremely minor. 2) The energy-saving technical progress is the most effective way to reduce the CO2 emissions for four industries although the effect decreased gradually, and the rest two mainly rely on factor substitution effect. 3) In the high emission scenario, the total CO2 emissions of the six high energy-consuming industries continue to grow rapidly, and it is difficult to reach the peak before 2030; in the medium and low emission scenarios, the total CO2 emissions of China's high energy-consuming industry will peak around 2017 and 2023, respectively.

关键词

碳排放 / 情景分析 / 能源技术进步 / 高耗能行业

Key words

CO2 emission / scenario analysis / energy-saving technical progress / high energy-consuming industry

引用本文

导出引用
杨冕 , 卢昕 , 段宏波. 中国高耗能行业碳排放因素分解与达峰路径研究. 系统工程理论与实践, 2018, 38(10): 2501-2511 https://doi.org/10.12011/1000-6788(2018)10-2501-11
YANG Mian , LU Xin , DUAN Hongbo. Analysis on the determinants and peaking paths of CO2 emissions in China's high energy-consuming industries. Systems Engineering - Theory & Practice, 2018, 38(10): 2501-2511 https://doi.org/10.12011/1000-6788(2018)10-2501-11
中图分类号: F124.3   

参考文献

[1] 陈诗一. 能源消耗、二氧化碳排放与中国工业的可持续发展[J]. 经济研究, 2009(4):41-55. Chen S Y. Energy consumption, CO2 emission and sustainable development in Chinese industry[J]. Economic Research Journal, 2009(4):41-55.
[2] 邵帅, 张曦, 赵兴荣. 中国制造业碳排放的经验分解与达峰路径——广义迪氏指数分解和动态情景分析[J]. 中国工业经济, 2017(3):44-63. Shao S, Zhang X, Zhao X R. Empirical decomposition and peaking pathway of China's manufacturing sector-Generalized divisia index method and dynamic scenario analysis[J]. China Industrial Economics, 2017(3):44-63.
[3] 段玉婉, 杨翠红. 中国与日本能源消耗和CO2排放差异的空间结构分解[J]. 系统工程理论与实践, 2017, 37(8):2083-2090. Duan Y W, Yang C H. A spatial structural decomposition of Chinese and Japanese energy consumption and CO2 emission[J]. Systems Engineering-Theory & Practice, 2017, 37(8):2083-2090.
[4] 肖皓, 陈娅妮, 毕慧敏. 国外最终需求对我国碳排放的诱发效应:基于中间品贸易渠道的考察[J]. 系统工程理论与实践, 2016, 36(10):2549-2561. Xiao H, Chen Y N, Bi H M. Foreign final demands' induced effects on China's carbon emissions:From the view of intermediate goods trade[J]. Systems Engineering-Theory & Practice, 2016, 36(10):2549-2561.
[5] Kaya Y. Impact of carbon dioxide emission on GNP growth:Interpretation of proposed scenarios[C]//Presentation to the Energy and Industry Subgroup, Response Strategies Working Group, IPCC, Paris, 1989:1-3.
[6] 林伯强, 刘希颖. 中国城市化阶段的碳排放:影响因素和减排策略[J]. 经济研究, 2010(8):66-78. Lin B Q, Liu X Y. China's carbon dioxide emissions under the urbanization process:Influence factors and abatement policies[J]. Economic Research Journal, 2010(8):66-78.
[7] 张伟, 朱启贵, 高辉. 产业结构升级、能源结构优化与产业体系低碳化发展[J]. 经济研究, 2016(12):62-75. Zhang W, Zhu Q G, Gao H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system[J]. Economic Research Journal, 2016(12):62-75.
[8] Yang C, McCollum D, McCarthy R. Meeting an 80% reduction in greenhouse gas emission from transportation by 2050:A case study in California[J]. Transportation Research Part D:Transport and Environment, 2009, 14(3):147-156.
[9] Ang B W, Zhang F Q, Choi K H. Factorizing changes in energy and environmental indicators through decomposition[J]. Energy, 1998, 23(6):489-495.
[10] Wang C, Chen J N, Zou J. Decomposition of energy-related CO2 emission in China:1957-2000[J]. Energy, 2005, 30(1):73-83.
[11] Zhang M, Mu H L, Ning Y D, et al. Decomposition of energy-related CO2 emission over 1991-2006 in China[J]. Ecological Economics, 2009, 68(7):2122-2128.
[12] 孟彦菊, 成蓉华, 黑韶敏. 碳排放的结构影响与效应分解[J]. 统计研究, 2013, 30(4):76-83. Meng Y J, Cheng R H, Hei S M. Structure influence and effect decomposition of carbon emissions[J]. Statistical Research, 2013, 30(4):76-83.
[13] 王峰, 吴丽华, 杨超. 中国经济发展中碳排放增长的驱动因素研究[J]. 经济研究, 2010(2):123-135. Wang F, Wu L H, Yang C. Driving factors for growth of carbon dioxide emissions during economic development in China[J]. Economic Research Journal, 2010(2):123-135.
[14] Vaninsky A. Factorial decomposition of CO2 emissions:A generalized divisia index approach[J]. Energy Economics, 2014(45):389-400.
[15] 渠慎宁, 郭朝先. 基于STIRPAT模型的中国碳排放峰值预测研究[J]. 中国人口·资源与环境, 2010(12):10-14. Qu S N, Guo C X. Forecast of China's carbon emissions based on STIRPAT model[J]. China Population, Resources and Environment, 2010(12):10-14.
[16] 林伯强, 蒋竺均. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界, 2009(4):27-36. Lin B Q, Jiang Z J. Research and forecast of environment Kuznets curve of carbon dioxide emissions in China[J]. Management World, 2009(4):27-36.
[17] Fan Y, Liu L C, Wu G, et al. Analyzing impact factors of CO2 emissions using the STIRPAT model[J]. Environmental Impact Assessment Review, 2006, 26(4):377-395.
[18] 丁唯佳, 吴先华, 孙宁, 等. 基于STIRPAT模型的我国制造业碳排放影响因素研究[J]. 数理统计与管理, 2012, 31(3):499-506. Ding W J, Wu X H, Sun N, et al. Analyzing impact factors of manufacturing CO2 emissions in China based on the STIRPAT model[J]. Journal of Applied Statistics and Management, 2012, 31(3):499-506.
[19] 郭朝先. 产业结构变动对中国碳排放的影响[J]. 中国人口·资源与环境, 2012(7):15-20.Guo C X. Effect of industrial structure change on carbon emission in China[J]. China Population, Resources and Environment, 2012(7):15-20.
[20] 周爽, 齐天宇, 赵旭光. 全球排放情景实现路径及国别影响研究[J]. 系统工程理论与实践, 2017, 37(8):2091-2101.Zhou S, Qi T Y, Zhao X G. Realization of global representative concentration pathways emission scenarios and regional impacts[J]. Systems Engineering-Theory & Practice, 2017, 37(8):2091-2101.
[21] Wang Q W, Zhang C, Cai W H. Factor substitution and energy productivity fluctuation in China:A parametric decomposition analysis[J]. Energy Policy, 2017(10):181-190.
[22] 申萌, 李凯杰, 曲如晓, 等. 技术进步、经济增长与二氧化碳排放:理论和经验研究[J]. 世界经济, 2012(7):83-100.Shen M, Li K J, Qu R X, et al. Technological progress, economic growth and carbon dioxide emissions:Theoretical and empirical research[J]. The Journal of World Economics, 2012(7):83-100.
[23] 陶小马, 邢建武, 黄鑫, 等. 中国工业部门的能源价格扭曲与要素替代研究[J]. 数量经济技术经济研究, 2009(11):3-16.Tao X M, Xing J W, Huang X, et al. The measurement of energy price distortions and factor substitution in Chinese industry[J]. The Journal of Quantitative & Technical Economics, 2009(11):3-16.
[24] 段宏波, 张古鹏, 范英, 等. 基于内生能源效率改进的宏观减排结构分析[J]. 管理科学学报, 2016, 19(7):10-23. Duan H B, Zhang G P, Fan Y, et al. China's carbon reduction structure:Analysis based on endogenous energy efficiency improvement[J]. Journal of Management Sciences in China, 2016, 19(7):10-23.
[25] Mas-Colell A. Microeconomic theory[M]. Shanghai:Shanghai University of Finance and Economics Press, 2014:343-414.
[26] Aghion P, Howitt P. Endogenous growth theory[M]. Beijing:Peking University Press, 2004:1-60.
[27] 杨福霞, 杨冕, 聂华林. 能源与非能源生产要素替代弹性研究——基于超越对数生产函数的实证分析[J]. 资源科学, 2011, 33(3):460-467. Yang F X, Yang M, Nie H L. A investigation of the elasticity of energy-nonenergy factor substitution:An empirical analysis based on the translog production function[J]. Resources Science, 2011, 33(3):460-467.
[28] 陈诗一. 中国工业分行业统计数据估算:1980-2008[J]. 经济学(季刊), 2011, 10(3):735-773. Chen S Y. Reconstruction of sub-industrial statistical data in China (1980-2008)[J]. China Economic Quarterly, 2011, 10(3):735-773.
[29] Yang M, Dalia P E, Yang F X, et al. Industrial energy efficiency in China:Achievements, challenges and opportunities[J]. Energy Strategy Reviews, 2015(6):20-29.
[30] 郑石明. 政治周期、五年规划与环境污染——以工业二氧化硫排放为例[J]. 政治学研究, 2016(2):80-94.Zheng S M. Political cycle, five-year plan and environmental pollution-With empirical analysis of industrial sulfur dioxide emissions[J]. Journal of Political Science, 2016(2):80-94.
[31] 郭朝先. 中国工业碳减排潜力估算[J]. 中国人口·资源与环境, 2010(9):13-20.Guo C X. Estimation of industrial carbon emission reduction potential in China[J]. China Population, Resources and Environment, 2010(9):13-20.

基金

国家自然科学基金(71774122,71503094,71303177);国家社科基金重大项目(16ZDA006,17ZDA036)
PDF(1014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/