高频数据波动率非参数估计及窗宽选择

王江涛, 周勇

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2491-2500.

PDF(709 KB)
PDF(709 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2491-2500. DOI: 10.12011/1000-6788(2018)10-2491-10
论文

高频数据波动率非参数估计及窗宽选择

    王江涛1,2, 周勇1,3
作者信息 +

The non-parametric estimation of volatility in high frequency data and its bandwidth selection

    WANG Jiangtao1,2, ZHOU Yong1,3
Author information +
文章历史 +

摘要

基于高频数据采用非参数的方法估量波动率,因其能更准确地度量波动率,一直是学者们研究的热点.然而,波动率的所有非参数估计都面临着窗宽的选择问题.由于最优窗宽中往往携带一些难以估计的未知参数,使得在应用过程中确定最优窗宽的具体数值存在困难,从而阻碍了这类估计量的使用.本文以已实现核估计作为波动率非参数估计的代表,构建了一种能自动从实际数据中确定最优窗宽的算法.理论分析的结果表明:算法具有稳定性,其所确定的窗宽是最优窗宽的无偏一致估计量,收敛速度为On-1/5).实际数据检验的结果显示,算法是稳定的并且具有良好的适应性,由算法确定的窗宽不依赖初始值的选取.模拟数据的结果显示,相比传统确定窗宽的方法,算法确定的窗宽所对应的估计量具有更高的精度.文中的算法可推广到波动率其他的非参数估计量中,从而为这类估计量的使用铺平道路.

Abstract

The non-parametric estimator of volatility based on high frequency data is the current focus due to its high accuracy. All of these estimator have to choose their optimal bandwidth in the application. However, it is difficult to calculate the optimal bandwidth from the real data and to apply these estimator, since optimal bandwidth always take some awkward unknown parameters. In this paper, taking realized kernel as the representative, a new data-driven algorithm for selecting the bandwidth has been constructed. The stability of algorithm is proved and the selected bandwidth is consistent estimator of optimal bandwidth without bias. The convergence rate is O(n-1/5). It is shown from the numerical examples that the algorithm is adaptive and the finally selected bandwidth is independent on the original value. Simulation result shows that the estimator for volatility with bandwidth selected by our algorithm has higher accuracy. The proposed algorithm could be modified to select optimal bandwidth for other non-parametric estimator of volatility as well.

关键词

波动率 / 已实现核估计 / 窗宽选择 / 算法设计

Key words

volatility / realize kernel / bandwidth selection / algorithm design

引用本文

导出引用
王江涛 , 周勇. 高频数据波动率非参数估计及窗宽选择. 系统工程理论与实践, 2018, 38(10): 2491-2500 https://doi.org/10.12011/1000-6788(2018)10-2491-10
WANG Jiangtao , ZHOU Yong. The non-parametric estimation of volatility in high frequency data and its bandwidth selection. Systems Engineering - Theory & Practice, 2018, 38(10): 2491-2500 https://doi.org/10.12011/1000-6788(2018)10-2491-10
中图分类号: F830   

参考文献

[1] Merton R C. On estimating the expected return on the market:An exploratory investigation[J]. Journal of Financial Economics, 1980, 8(4):323-361.
[2] French K R, Schwert G W, Stambaugh R F. Expected stock returns and volatility[J]. Journal of Financial Economics, 1987, 19(2):3-29.
[3] Andersen T G, Bollerslev T. Answering the skeptics:Yes, standard volatility model do provide accurate forecast[J]. International Economics Review, 1998, 39(4):885-905.
[4] Shephard N. Estimating quadratic variation using realized variance[J]. Journal of Applied Econometrics, 2010, 17(5):457-477.
[5] Bollen B, Inder B. Estimating daily volatility in financial markets utilizing intraday data[J]. Journal of Empirical Finance, 2002, 9(5):551-562.
[6] Aitsahalia Y, Mykland P A, Zhang L. How often to sample a continuous-time process in the presence of market microstructure noise[J]. Review of Financial Studies, 2005, 18(2):351-416.
[7] Zhang L, Mykland P A, Ait-Sahalia Y. A tale of two time scale:Determining integrated volatility with noisy high-frequency data[J]. Journal of The American Statistical Association, 2005, 100(9):472-493.
[8] Ait-Sahalia Y, Mykland P A, Zhang L. Ultra high frequency volatility estimation with dependent microstructure noise[J]. Journal of Econometrics, 2011, 1(60):160-175.
[9] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Multivariate realized kernels:Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading[J]. Journal of Econometrics, 2011, 16(2):149-169.
[10] Carrasco M, Kotchoni R. Adaptive realized kernels[C]. HAL, 2013:1-40.
[11] Ikeda S S. Two scale realized kernels:A univariate case[J]. Journal of Financial Econometrics, 2015, 13(1):126-165.
[12] Jacod J, Li Y, Mykland P A, et al. Microstructure noise in the continuous case:The pre-averaging approach[J]. Stochastic Processes and their Applications, 2009, 119(2):2249-2276.
[13] Zhou B. High frequency data and volatility in foreign-exchange rates[J]. Journal of Business and Economics Statistics, 1996, 14(1):45-52.
[14] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business & Economic Statistics, 2006, 24(2):127-161.
[15] 龙瑞, 谢赤, 曾志坚, 等. 高频环境下沪深300指数期货波动测度——基于已实现波动率及其改进方法[J]. 系统工程理论与实践, 2011, 31(5):813-822.Long R, Xie C, Zeng Z J, et al. Measurement of CSI 300 stock index futures volatility under high-frequency environment-Methods based on realized volatility and its modification[J]. Systems Engineering-Theory & Practice, 2011, 31(5):813-822.
[16] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Realized kernels in practice:Trades and quotes[J]. Econometrics Journal, 2009, 12(3):1-32.
[17] Dobrev D, Schaumburg E. A robust neighborhood truncation approach to estimation of integrated quarticity[J]. Econometric Theory, 2014, 30(1):3-59.
[18] Gasser T, Kneip A, Kohler W. A flexible and fast method for automatic smoothing[J]. Publications of the American Statistical Association, 1991, 86(415):643-652.
[19] 赵树然, 姜亚平, 任培民.高频波动率矩阵估计的比较分析——基于有噪非同步的金融数据[J].中国管理科学, 2015, 13(10):19-29. Zhao S R, Jiang Y P, Ren P M. Comparing estimators of the high-frequency volatility matrix in the presence of non-synchronous trading and market microstructure noise[J]. Chinese Journal of Management Science, 2015, 23(10):19-29.

基金

国家自然科学基金委重点项目(71331006,91546202);中国科学院重点实验室(2008DP173182);上海财经大学创新团队支持计划(IRTSHUFE13122402);教育部人文社会科学研究青年项目(15YJC910007)
PDF(709 KB)

626

Accesses

0

Citation

Detail

段落导航
相关文章

/