基于非均衡模糊近似支持向量机的P2P网贷借款人信用风险评估及应用

张卫国, 卢媛媛, 刘勇军

系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2466-2478.

PDF(965 KB)
PDF(965 KB)
系统工程理论与实践 ›› 2018, Vol. 38 ›› Issue (10) : 2466-2478. DOI: 10.12011/1000-6788(2018)10-2466-13
论文

基于非均衡模糊近似支持向量机的P2P网贷借款人信用风险评估及应用

    张卫国, 卢媛媛, 刘勇军
作者信息 +

The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application

    ZHANG Weiguo, LU Yuanyuan, LIU Yongjun
Author information +
文章历史 +

摘要

现实中P2P网贷平台可信用户和违约用户的样本分布具有非均衡性,且投资者对分类错误持有不同接受程度.本文通过使用双边权重误差测量方法和映射距离选择正负样本误差项的隶属度,构建了基于非均衡模糊近似支持向量机(DFPSVM)的P2P网贷借款人信用风险评估模型.然后,提出了借款人信用评分及评级方法.最后,借助人人贷平台借款人信用信息进行了实证分析,结果表明所构建的模型与其他模型相比具有更好的适应能力和较高的分类准确度,能有效减少样本非均衡性对分类结果的影响,显著增加负类样本分类的准确率.获得的人人贷平台借款人的信用得分、信用等级及违约率分布能够为平台控制违约风险及投资者决策提供帮助.

Abstract

It is the fact that the sample distributions of trusted users and default users in P2P platform are unbalanced and the investors have different acceptable degrees in classification error. This paper establishes the disequilibrium fuzzy proximal support vector machine (DFPSVM) to assess the borrowers' credit risk in P2P platform by using the bilateral weighted error measuring method and mapping distance to measure fuzzy memberships of the positive and negative samples error term. Next, it proposes the borrowers' credit scoring and credit rating model in P2P platform. Finally, the empirical results based on the borrowers' information in Renrendai platform show that the proposed DFPSVM model has better generalization ability and higher classification accuracy than other existing models. It can effectively reduce the effect of disequilibrium samples and increase the classification accuracy of negative samples. The obtained borrowers' credit score, credit rating and the distribution of default rate is helpful to control the default risk of P2P platform and support the decision making process.

关键词

P2P网贷 / 信用风险评估 / 模糊近似支持向量机 / 非均衡样本

Key words

P2P lending / credit risk assessment / fuzzy proximal support vector machine / disequilibrium samples

引用本文

导出引用
张卫国 , 卢媛媛 , 刘勇军. 基于非均衡模糊近似支持向量机的P2P网贷借款人信用风险评估及应用. 系统工程理论与实践, 2018, 38(10): 2466-2478 https://doi.org/10.12011/1000-6788(2018)10-2466-13
ZHANG Weiguo , LU Yuanyuan , LIU Yongjun. The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application. Systems Engineering - Theory & Practice, 2018, 38(10): 2466-2478 https://doi.org/10.12011/1000-6788(2018)10-2466-13
中图分类号: F830   

参考文献

[1] 谢平,邹传伟. 互联网金融模式研究[J].金融研究, 2012(12):11-22.Xie P, Zou C W. Research on Internet finance model[J]. Journal of Financial Research, 2012(12):11-22.
[2] Stein J C. Information production and capital allocation:Decentralized versus hierarchical firms[J]. The Journal of Finance, 2002, 57(5):1891-1921.
[3] 廖理,李梦然,王正位. 聪明的投资者:非完全市场化利率与风险识别——来自P2P网络借贷的证据[J]. 经济研究, 2014(7):125-137.Liao L, Li M R, Wang Z W. The intelligent investor:Not-fully-marketized interest rate and risk identify-Evidence from P2P lending[J]. Journal of Financial Research, 2014(7):125-137.
[4] Puro L, Teich J E, Wallenius H, et al. Borrower decision aid for people-to-people lending[J]. Decision Support System, 2010, 49:52-60.
[5] Herzenstein M, Andrews R, Dholakia U, et al. The democratization of personal consumer loans? Determinants of success in online peer-to-peer lending communities[R]. SSRN Working Paper, 2008.
[6] Kumar S. Bank of one:Empirical analysis of peer-to-peer financial marketplaces[C]//Proceedings of the American Conference on Information Systems, 2007:1-8.
[7] 郭忠金, 林海霞. P2P网上借贷信用机制研究——以拍拍贷为例[J]. 现代管理科学, 2013(5):90-92.Guo Z J, Lin H X. A credit system study of the P2P lending-Evidence from Paipai lending[J]. Modern Management Science, 2013(5):90-92.
[8] 迟国泰,张亚京,石宝峰.基于Probit回归的小企业债信评级模型及实证[J]管理科学学报, 2016, 19(6):136-156.Chi G T, Zhang Y J, Shi B F. The debt rating for small enterprises based on Probit regression[J]. Journal of Management Sciences in China, 2016, 19(6):136-156.
[9] Herzenstein M, Sonenshein S, Dholakia U M. Tell me a good story and I may lend you my money:The role of narratives in peer-to-peer lending decisions[R]. SSRN Working Paper, 2011.
[10] Duarte J, Siegel S, Young L. Trust and credit:The role of appearance in peer-to-peer lending[J]. Review of Financial Studies, 2012, 25:2455-2484.
[11] Bekhet H A, Eletter S F K. Credit risk assessment model for Jordanian commercial banks:Neural scoring approach[J]. Review of Development Finance, 2014, 4(1):20-28.
[12] 陈晓红,杨志慧.基于改进模糊综合评价法的信用评估体系研究——以我国中小上市公司为样本的实证研究[J]. 中国管理科学, 2015, 23(1):146-153.Chen X H, Yang Z H. The study of credit evaluation system based on improved fuzzy evaluation method-Evidence from small and medium-sized enterprises in China[J]. Chinese Journal of Management Science, 2015, 23(1):146-153.
[13] Guo Y H, Zhou W J, Luo C Y, et al. Instance-based credit risk assessment for investment decisions in P2P lending[J]. European Journal of Operational Research, 2016, 249(2):417-426.
[14] Harris T. Credit scoring using the clustered support vector machine[J]. Expert Systems with Applications, 2015, 42(2):741-750.
[15] Danenas P, Garsva G. Selection of support vector machines based classifiers for credit risk domain[J]. Expert Systems with Applications, 2015, 42(6):3194-3204.
[16] 王春峰,万海晖,张维.基于神经网络技术的商业银行信用风险评估[J]. 系统工程理论与实践, 1999, 19(9):24-32.Wang C F, Wan H H, Zhang W. Credit risk assessment in commercial banks using neural networks[J]. Systems Engineering-Theory & Practice, 1999, 19(9):24-32.
[17] 张奇,胡蓝艺,王珏.基于Logit与SVM的银行业信用风险预警模型研究[J]. 系统工程理论与实践, 2015, 35(7):1784-1790.Zhang Q, Hu L Y, Wang J. Study on credit risk early warning based on Logit and SVM[J]. Systems Engineering-Theory & Practice, 2015, 35(7):1784-1790.
[18] 肖进,刘敦虎,顾新,等.银行客户信用评估动态分类器集成选择模型[J]. 管理科学学报, 2015, 18(3):114-126.Xiao J, Liu D H, Gu X, et al. Dynamic classifier ensemble selection model for bank customer's credit scoring[J]. Journal of Management Sciences in China, 2015, 18(3):114-126.
[19] 吴德胜,梁樑.基于V-fold Cross-validation和Elman神经网络的信用评价研究[J]. 系统工程理论与实践, 2004, 24(4):92-98.Wu D S, Liang L. Research of credit score based on V-fold Cross-validation and Elman neural networks[J]. Systems Engineering-Theory & Practice, 2004, 24(4):92-98.
[20] 吴冲,吕静杰,潘启树,等.基于模糊神经网络的商业银行信用风险评估模型研究[J].系统工程理论与实践, 2004, 24(11):1-8.Wu C, Lü J J, Pan Q S, et al. Study on credit risk assessment model of commercial banks based on fuzzy neural network[J]. Systems Engineering-Theory & Practice, 2004, 24(11):1-8.
[21] 胡海青,张琅,张道宏.供应链金融视角下的中小企业信用风险评估研究——基于SVM和BP神经网络的比较研究[J]. 管理评论, 2012, 24(11):70-80.Hu H Q, Zhang L, Zhang D H. Research on SMEs credit risk assessment from the perspective of supply chain finance-A comparative study on the SVM model and BP model[J]. Management Review, 2012, 24(11):70-80.
[22] 姚潇,余乐安.模糊近似支持向量机模型及其在信用风险评估模型中的应用[J].系统工程理论与实践, 2012, 32(3):549-554.Yao X, Yu L A. A fuzzy proximal support vector machine model and its application to credit risk analysis[J]. Systems Engineering-Theory & Practice, 2012, 32(3):549-554.
[23] 迟国泰,潘明道,齐菲.一个基于小样本的银行信用风险评级模型的设计及应用[J].数量经济技术经济研究, 2014, 31(6):102-116.Chi G T, Pan M D, Qi F. A credit rating model for analyzing bank customers based on small sample[J]. The Journal of Quantitative & Technical Economics, 2014, 31(6):102-116.
[24] Vapnik V. The nature of statistical learning theory[M]. New York:Springer, 1995.
[25] Fung G, Mangasarian O L. Proximal support vector machine classifiers[C]//Proceedings of the Seventh ACM SIGKDD International Conference of Knowledge Discovery and DATA Mining, San Francisco, California, USA, 2001:77-86.
[26] 李焰,高弋君,李珍妮,等.借款人描述性信息对投资人决策的影响——基于P2P网络借贷平台的分析[J]. 经济研究, 2014(S1):143-155.Li Y, Gao Y J, Li Z N, et al. The influence of borrower's description on investor' decision-Analyze based on P2P online lending[J]. Economic Research Journal, 2014(S1):143-155.
[27] 李悦雷,郭阳,张维.中国P2P小额贷款市场借贷成功率影响因素分析[J]. 金融研究, 2013(7):126-138.Li Y L, Guo Y, Zhang W. The analysis of impact factors on loan performance in Chinese P2P microfinance market[J]. Journal of Financial Research, 2013(7):126-138.
[28] 王会娟,廖理.中国P2P网络借贷平台信用认证机制研究——来自"人人贷"的经验证据[J].中国工业经济, 2014, 4(4):136-147.Wang H J, Liao L. Chinese P2P platform's credit authentication mechanism research-Evidence from Renrendai[J]. China Industrial Economics, 2014, 4(4):136-147.
[29] 廖理,吉霖,张伟强.借贷市场能准确识别学历的价值吗?——来自P2P平台的经验证据[J]. 金融研究, 2015(3):146-159.Liao L, Ji L, Zhang W Q. Education and credit:Evidence from P2P lending platform[J]. Journal of Financial Research, 2015(3):146-159.

基金

国家自然科学基金(71501076,71720107002);广东省自然科学基金(2017A030312001);广州市金融服务创新与风险管理研究基地
PDF(965 KB)

544

Accesses

0

Citation

Detail

段落导航
相关文章

/