分别考虑期货机会成本和期权预算约束,建立最优期货和期权套期保值模型.通过构造等价鞅测度,在风险厌恶型一般效用函数下证明了模型最优解是唯一存在的,给出了求解模型的算法步骤;并在负指数效用函数下得到期货和期权最优头寸的显式表达式.实证研究表明:为规避上证50ETF价格风险,期货和期权套期保值都获得了正收益.期货(权)套期保值收益随着投资者风险厌恶系数的增加而增加(减少).通过分析预算的影响建议风险厌恶系数较小的投资者在预算较大时选择期货套期保值,而风险厌恶系数小预算较少或风险厌恶系数较大的投资者选择期权套期保值;通过模拟金融危机情景发现随着标的价格波动的增大,期货套期保值收益增大、期权套保收益减少,建议投资者在现货价格波动较大时优先采取期货套期保值.
Abstract
Considering the opportunity cost of futures and budget constraints of options respectively, this paper establishes the optimal futures and options dynamic hedging models. By constructing the equivalent martingale measure, the optimal solutions of the models are proved to be unique under the general risk aversion utility function, then the steps of calculating optimal hedging positions are given. Furthermore, the explicit expressions of the optimal positions are obtained under the negative exponential utility function. Empirical study results indicate that:To avoid the decline risk of Shanghai 50ETF price, both futures hedging and options hedging have yielded positive returns. Meanwhile, investors' futures hedging profit increases when risk aversion coefficient increases, while options hedging profit deceases. By analyzing the impact of the budget, it is suggested that investors with smaller risk aversion coefficient and larger budget could choose futures hedging; ones with smaller risk aversion coefficient and smaller budget or with larger risk aversion coefficient could choose options hedging. According to the simulation results of a financial crisis scenario, it finds that futures hedging income increases and options hedging income decreases along with the volatility of the underlying asset price. Investors are suggested to take priority in futures hedging to match a financial turmoil scenario.
关键词
期货套期保值 /
期权套期保值 /
等价鞅测度 /
负指数效用
{{custom_keyword}} /
Key words
futures hedging /
options hedging /
equivalent martingale measure /
negative exponential utility function
{{custom_keyword}} /
中图分类号:
F830.9
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ederington L H. The hedging performance of the new futures market[J]. Journal of Finance, 1979, 34(1):157-170.
[2] Ghosh A. Hedging with stock index futures:Estimation and forecasting with error correction model[J]. Journal of Future Markets, 1993, 13(7):743-752.
[3] Engle R. Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4):987-1007.
[4] Zhou J. Hedging performance of REIT index futures:A comparison of alternative hedge ratio estimation methods[J]. Economic Modelling, 2016, 52(1):690-698.
[5] Dark J. Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH[J]. Journal of Banking and Finance, 2015, 61(2):269-285.
[6] 谢赤, 屈敏, 王纲金. 基于M-Copula-GJR-VaR模型的黄金市场最优套期保值比率研究[J]. 管理科学, 2013, 26(2):90-99. Xie C, Qu M, Wang G J. Research on optimal hedging ratios of gold market based on M-Copula-GJR-VaR model[J]. Journal of Management Science, 2013, 26(2):90-99.
[7] 赵树然, 张燕燕, 任培民. 异质金融市场高频期货交叉套期保值问题研究[J]. 系统工程理论与实践, 2016, 36(9):2189-2204. Zhao S R, Zhang Y Y, Ren P M. Study on high-equency futures cross-hedging problem driven by heterogeneous financial market[J]. Systems Engineering-Theory & Practice, 2016, 36(9):2189-2204.
[8] 廖萍康, 张卫国, 傅俊辉. 考虑机会成本的最优期货备用保证金需求[J]. 系统管理学报, 2013, 22(1):91-98. Liao P K, Zhang W G, Fu J H. A study on reserve margin of futures markets considering opportunity cost[J]. Journal of Systems & Management, 2013, 22(1):91-98.
[9] 迟国泰, 余方平, 王玉刚. 基于动态规划多期期货套期保值优化模型研究[J]. 中国管理科学, 2010, 18(3):17-24. Chi G T, Yu F P, Wang Y G. Research on multi-period futures dynamic hedging model[J]. Chinese Journal of Management Science, 2010, 18(3):17-24.
[10] 傅俊辉, 张卫国, 杜倩, 等. 规避逐日盯市风险的期货套期保值模型[J]. 管理科学, 2011, 24(3):86-93. Fu J H, Zhang W G, Du Q, et al. Futures hedging models under mark-to-market risk[J]. Journal of Management Science, 2011, 24(3):86-93.
[11] Liang C X, Li S H. Option pricing and hedging in incomplete market driven by normal tempered stable process with stochastic volatility[J]. Journal of Mathematical Analysis and Applications, 2015, 423(1):701-719.
[12] Wang X T, Zhao Z F, Fang X F. Option pricing and portfolio hedging under the mixed hedging strategy[J]. Physica A, 2015, 424(4):194-206.
[13] 李英华, 李兴斯. 不完全市场下收益最大化期权定价法[J]. 系统工程理论与实践, 2011, 31(12):2281-2286. Li Y H, Li X S. Maximizing return model for option pricing in the incomplete market[J]. Systems Engineering-Theory & Practice, 2011, 31(12):2281-2286.
[14] Lien D, Tse Y K. Hedging downside risk:Futures vs. options[J]. International Review of Economics and Finance, 2001, 10(2):159-169.
[15] Wong K P. Currency hedging with options and futures[J]. European Economic Review, 2003, 47(5):833-839.
[16] Capiński M J. Hedging conditional value at risk with options[J]. European Journal of Operational Research, 2015, 242(2):688-691.
[17] 刘宣会, 赵宁宁, 续秋霞. 基于随机Lagrange方法的最优套期保值策略[J]. 系统工程理论与实践, 2010, 30(6):1034-1039. Liu X H, Zhao N N, Xu Q X. Optimal hedging strategy based on stochastic Lagrange method[J]. Systems Engineering-Theory & Practice, 2010, 30(6):1034-1039.
[18] 杨春鹏. 限定亏损概率下期权交易中的套期保值比率研究[J]. 预测, 2000, 19(3):61-62. Yang C P. The hedge ratio for option trade under limited loss probability[J]. Forecasting, 2000, 19(3):61-62.
[19] 郭建华, 肖庆宪. 跳扩散结构下风险最小化动态套期保值策略研究[J]. 运筹与管理, 2011, 20(2):145-151. Guo J H, Xiao Q X. Research on dynamic hedging under jump-diffusion settings with risk minimizing[J]. Operations Research and Management Science, 2011, 20(2):145-151.
[20] Harrison M, Kreps D. Martingales and multiperiod securities markets[J]. Journal of Economic Theory, 1979, 20(3):381-408.
[21] Harrison M, Pliska S. Martingales and stochastic integrals in the theory of continuous trading[J]. Stochastic Processes and Their Applications, 1981, 11(3):215-260.
[22] Lioui A, Poncet P. General equilibrium real and nominal interest rates[J]. Journal of Banking & Finance, 2004, 28(7):1569-1595.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金国际(地区)合作与交流项目(71720107002);广东省自然科学基金(2017A030312001,2014A030310454);广州市金融服务创新与风险管理研究基地(N5150800)
{{custom_fund}}