中图分类号:
F830
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Li D X. On default correlation:A Copula function approach[J]. Journal of Fixed Income, 2000, 9:43-54.
[2] Mashal R, Zeevi A. Beyond correlation:Extreme co-movements between financial assets[M]. Columbia Graduate School of Business, 2002.
[3] Hull J C, White A. Valuation of a CDO and nth to default CDS without Monte Carlo simulation[J]. Journal of Derivatives, 2004:8-23.
[4] Schönbucher P. Credit derivatives pricing models:Model, pricing and implementation[M]. Wiley, Chichester, UK, 2003.
[5] Andersen L, Sidenius J, Basu S. All your hedges in one basket[J]. Risk, 2003, 16:67-72.
[6] 詹原瑞, 韩铁, 马珊珊. 基于copula函数族的信用违约互换组合定价模型[J]. 中国管理科学, 2008, 16(1):1-6. Zhan Y R, Han T, Ma S S. Pricing model of basket credit default swap based on copulas[J]. Chinese Journal of Management Science, 2008, 16(1):1-6.
[7] Chen Z Y, Glasserman P. Fast pricing of basket default swaps[J]. Operations Research, 2008, 56(2):286-303.
[8] Choe G H, Jang H J. The kth default time distribution and basket default swap pricing[J]. Quantitative Finance, 2011, 11(12):1793-1801.
[9] Joshi M, Kainth D. Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model[J]. Quantitative Finance, 2004, 4:266-275.
[10] Glasserman P, Li J. Importance sampling for portfolio credit risk[J]. Management Science, 2005, 51(11):1643-1656.
[11] Glasserman P, Juneja S. Uniformly efficient importance sampling for the tail distribution of sums of random variables[J]. Mathematics of Operations Research, 2008, 33(1):36-50.
[12] Bassamboo A, Juneja S, Zeevi A. Portfolio credit risk with extremal dependence:Asymptotic analysis and efficient simulation[J]. Operations Research, 2008, 56(3):593-606.
[13] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method[M]. 2nd ed. John Wiley & Sons, New York, 2007.
[14] Chan J C C, Kroese D P. Efficient estimation of large portfolio loss probabilities in t-copula models[J]. European Journal of Operational Research, 2012, 205:361-367.
[15] Liu G. Simulating risk contributions of credit portfolios[J]. Operations Research, 2015, 63(1):104-121.
[16] Wang T, Dyer J S. A copulas-based approach to modeling dependence in decision trees[J]. Operations Research, 2012, 60(1):225-242.
[17] 易文德. 基于Copula函数的组合资产条件相依性模型及其应用[J]. 系统工程理论与实践, 2011, 31(6):1004-1013. Yi W D. Conditional dependence models and its applications of portfolios of assets based on Copula functions[J]. Systems Engineering——Theory & Practice, 2011, 31(6):1004-1013.
[18] Weiβ G N F, Supper H. Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas[J]. Journal of Banking & Finance, 2013, 37(9):3334-3350.
[19] 马锋, 魏宇, 黄登仕. 基于vine copula方法的股市组合动态VaR测度及预测模型研究[J]. 系统工程理论与实践, 2015, 35(1):26-36. Ma F, Wei Y, Huang D S. Measurement of dynamic stocks portfolio VaR and its forecasting model based on vine copula[J]. Systems Engineering——Theory & Practice, 2015, 35(1):26-36.
[20] Oh D H, Patton A J. Modelling dependence in high dimensions with factor copulas[J]. Journal of Business & Economic Statistics, 2015, 2015(51).
[21] Wu P C, Kao L J, Lee C F. Factor Copula for defaultable basket credit derivatives[M]. Springer New York, 2015.
[22] Meine C, Supper H, Weiβ G N F. Is tail risk priced in credit default swap premia?[J]. Review of Finance, 2015:1-50.
[23] Willard G A. Calculating prices and sensitivities for path-independent derivative securities in multifactor models[J]. Journal of Derivatives, 2009, 5(1):45-61.
[24] Drimus G G. Options on realized variance in Log-OU models[J]. Applied Mathematical Finance, 2012, 19(5):477-494.
[25] 梁义娟, 徐承龙. 两因子期权定价模型的条件蒙特卡罗加速方法[J]. 同济大学学报(自然科学版), 2014, 42(4):645-650. Liang Y J, Xu C L. Efficient accelerating method of conditional monte-carlo simulation for two-factor option pricing model[J]. Journal of Tongji University (Natural Science), 2014, 42(4):645-650.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重点项目(71231005);中央高校基本科研业务费专项资金(2014QN203)
{{custom_fund}}