基于条件蒙特卡罗方法的信用违约互换合约定价

邓洋, 何旭彪

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (8) : 2043-2051.

PDF(662 KB)
PDF(662 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (8) : 2043-2051. DOI: 10.12011/1000-6788(2017)08-2043-09
论文

基于条件蒙特卡罗方法的信用违约互换合约定价

    邓洋1, 何旭彪2
作者信息 +

Pricing credit default swap based on conditional Monte Carlo method

    DENG Yang1, HE Xubiao2
Author information +
文章历史 +

摘要

多标的资产违约相关性结构的度量及其联合违约时间的模拟是信用违约互换合约定价的关键.Copula函数和蒙特卡罗模拟是解决此关键问题的有力工具,被广泛应用于信用衍生品定价.本文基于因子t-copula模型,结合条件蒙特卡罗模拟,构建了计算第n次信用违约互换合约的条件蒙特卡罗算法.该算法能够捕捉多标的资产违约的尾部相关性,更准确地度量标的资产组合的违约风险及提高违约事件的模拟效率.数值结果表明,在考虑尾部相关性的情形下,采用重要抽样技术的JK算法和改进的JK算法是不稳定的,不能达到减方差的目的;而本文新构建的定价算法更稳定,在高斯copula和t-copula模型下,都能够有效减小估计量的方差,提高信用违约互换合约的定价精度和可靠性.

Abstract

The main challenge of pricing credit default swaps is to properly capture the dependence structure of all underlying assets and then simulate their joint default times. Copula functions and Monte Carlo simulation are widely adopted to address these two problems respectively and price credit derivatives. Based on a newly developed factor student t-copula model and conditional Monte Carlo simulation, this study proposed a conditional Monte Carlo algorithm for valuating CDS which not only can capture the tail dependence among the underlying assets and measure their joint default risk more precisely, but also can improve the simulation efficiency of default events. Our results demonstrated that, compared with the famous JK and improved JK methods, the proposed algorithm is much more stable even in the t-copula model and can significantly improve the pricing accuracy as well.

关键词

信用违约互换合约 / 因子copula模型 / 条件蒙特卡罗模拟 / 尾部相关性

Key words

credit default swap / factor copula model / conditional Monte Carlo simulation / tail dependence

引用本文

导出引用
邓洋 , 何旭彪. 基于条件蒙特卡罗方法的信用违约互换合约定价. 系统工程理论与实践, 2017, 37(8): 2043-2051 https://doi.org/10.12011/1000-6788(2017)08-2043-09
DENG Yang , HE Xubiao. Pricing credit default swap based on conditional Monte Carlo method. Systems Engineering - Theory & Practice, 2017, 37(8): 2043-2051 https://doi.org/10.12011/1000-6788(2017)08-2043-09
中图分类号: F830   

参考文献

[1] Li D X. On default correlation:A Copula function approach[J]. Journal of Fixed Income, 2000, 9:43-54.
[2] Mashal R, Zeevi A. Beyond correlation:Extreme co-movements between financial assets[M]. Columbia Graduate School of Business, 2002.
[3] Hull J C, White A. Valuation of a CDO and nth to default CDS without Monte Carlo simulation[J]. Journal of Derivatives, 2004:8-23.
[4] Schönbucher P. Credit derivatives pricing models:Model, pricing and implementation[M]. Wiley, Chichester, UK, 2003.
[5] Andersen L, Sidenius J, Basu S. All your hedges in one basket[J]. Risk, 2003, 16:67-72.
[6] 詹原瑞, 韩铁, 马珊珊. 基于copula函数族的信用违约互换组合定价模型[J]. 中国管理科学, 2008, 16(1):1-6. Zhan Y R, Han T, Ma S S. Pricing model of basket credit default swap based on copulas[J]. Chinese Journal of Management Science, 2008, 16(1):1-6.
[7] Chen Z Y, Glasserman P. Fast pricing of basket default swaps[J]. Operations Research, 2008, 56(2):286-303.
[8] Choe G H, Jang H J. The kth default time distribution and basket default swap pricing[J]. Quantitative Finance, 2011, 11(12):1793-1801.
[9] Joshi M, Kainth D. Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model[J]. Quantitative Finance, 2004, 4:266-275.
[10] Glasserman P, Li J. Importance sampling for portfolio credit risk[J]. Management Science, 2005, 51(11):1643-1656.
[11] Glasserman P, Juneja S. Uniformly efficient importance sampling for the tail distribution of sums of random variables[J]. Mathematics of Operations Research, 2008, 33(1):36-50.
[12] Bassamboo A, Juneja S, Zeevi A. Portfolio credit risk with extremal dependence:Asymptotic analysis and efficient simulation[J]. Operations Research, 2008, 56(3):593-606.
[13] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method[M]. 2nd ed. John Wiley & Sons, New York, 2007.
[14] Chan J C C, Kroese D P. Efficient estimation of large portfolio loss probabilities in t-copula models[J]. European Journal of Operational Research, 2012, 205:361-367.
[15] Liu G. Simulating risk contributions of credit portfolios[J]. Operations Research, 2015, 63(1):104-121.
[16] Wang T, Dyer J S. A copulas-based approach to modeling dependence in decision trees[J]. Operations Research, 2012, 60(1):225-242.
[17] 易文德. 基于Copula函数的组合资产条件相依性模型及其应用[J]. 系统工程理论与实践, 2011, 31(6):1004-1013. Yi W D. Conditional dependence models and its applications of portfolios of assets based on Copula functions[J]. Systems Engineering——Theory & Practice, 2011, 31(6):1004-1013.
[18] Weiβ G N F, Supper H. Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas[J]. Journal of Banking & Finance, 2013, 37(9):3334-3350.
[19] 马锋, 魏宇, 黄登仕. 基于vine copula方法的股市组合动态VaR测度及预测模型研究[J]. 系统工程理论与实践, 2015, 35(1):26-36. Ma F, Wei Y, Huang D S. Measurement of dynamic stocks portfolio VaR and its forecasting model based on vine copula[J]. Systems Engineering——Theory & Practice, 2015, 35(1):26-36.
[20] Oh D H, Patton A J. Modelling dependence in high dimensions with factor copulas[J]. Journal of Business & Economic Statistics, 2015, 2015(51).
[21] Wu P C, Kao L J, Lee C F. Factor Copula for defaultable basket credit derivatives[M]. Springer New York, 2015.
[22] Meine C, Supper H, Weiβ G N F. Is tail risk priced in credit default swap premia?[J]. Review of Finance, 2015:1-50.
[23] Willard G A. Calculating prices and sensitivities for path-independent derivative securities in multifactor models[J]. Journal of Derivatives, 2009, 5(1):45-61.
[24] Drimus G G. Options on realized variance in Log-OU models[J]. Applied Mathematical Finance, 2012, 19(5):477-494.
[25] 梁义娟, 徐承龙. 两因子期权定价模型的条件蒙特卡罗加速方法[J]. 同济大学学报(自然科学版), 2014, 42(4):645-650. Liang Y J, Xu C L. Efficient accelerating method of conditional monte-carlo simulation for two-factor option pricing model[J]. Journal of Tongji University (Natural Science), 2014, 42(4):645-650.

基金

国家自然科学基金重点项目(71231005);中央高校基本科研业务费专项资金(2014QN203)
PDF(662 KB)

Accesses

Citation

Detail

段落导航
相关文章

/