测试代价敏感的粗糙集方法

鞠恒荣, 周献中, 杨佩, 李华雄, 杨习贝

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (1) : 228-240.

PDF(751 KB)
PDF(751 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (1) : 228-240. DOI: 10.12011/1000-6788(2017)01-0228-13
论文

测试代价敏感的粗糙集方法

    鞠恒荣1,4, 周献中1,2, 杨佩1,3, 李华雄1, 杨习贝4
作者信息 +

Test-cost-sensitive based rough set approach

    JU Hengrong1,4, ZHOU Xianzhong1,2, YANG Pei1,3, LI Huaxiong1, YANG Xibei4
Author information +
文章历史 +

摘要

在粗糙集模型中,α量化不可分辨关系是强与弱不可分辨关系的推广形式.然而值得注意的是,基于这三种不可分辨关系的粗糙集并未考虑数据中属性的测试代价.为解决这一问题,提出了测试代价敏感的α量化粗糙集模型,从二元关系的角度使得粗糙集模型代价敏感,并将新模型与基于强不可分辨、弱不可分辨以及传统α量化不可分辨关系的粗糙集模型进行了对比分析.进一步地,通过分析传统启发式算法在求解约简的过程中未考虑降低代价这一不足之处,提出一种新的属性适应性函数,并将其应用于基于遗传算法的约简求解中.实验结果表明该方法不仅可以降低由边界域所带来的不确定性而且同时降低了约简后的测试代价.

Abstract

In rough set model, α quantitative indiscernibility relation is a generalization of both strong and weak indiscernibility relations. However, such three indiscernibility relations based rough sets do not take the test costs of the attributes into consideration. To solve this problem, a test-cost-sensitive α quantitative indiscernibility relation based rough set is proposed. From the viewpoint of the binary relation, the new rough set is then sensitive to test costs. Moreover, the relationships among strong, weak, α quantitative and test-cost-sensitive α quantitative indiscernibility relations based rough sets are explored. Finally, it is noticed that the traditional heuristic algorithm does not take the decreasing of cost into account. Therefore, not only a new fitness function is proposed, but also such fitness function is carried out in genetic algorithm for obtaining reduct with minor test cost. The experimental results show that such approach not only decreases the uncertainty comes from boundary region, but also decreases the cost of reduct.

关键词

粗糙集 / α量化不可分辨关系 / 测试代价敏感 / 属性约简

Key words

rough set / α quantitative indiscernibility relation / test-cost-sensitive / attribute reduction

引用本文

导出引用
鞠恒荣 , 周献中 , 杨佩 , 李华雄 , 杨习贝. 测试代价敏感的粗糙集方法. 系统工程理论与实践, 2017, 37(1): 228-240 https://doi.org/10.12011/1000-6788(2017)01-0228-13
JU Hengrong , ZHOU Xianzhong , YANG Pei , LI Huaxiong , YANG Xibei. Test-cost-sensitive based rough set approach. Systems Engineering - Theory & Practice, 2017, 37(1): 228-240 https://doi.org/10.12011/1000-6788(2017)01-0228-13
中图分类号: TP13   

参考文献

[1] Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic, 1991.
[2] Park I K, Choi G S. Rough set approach for clustering categorical data using information-theoretic dependency measure[J]. Information Systems, 2015, 48: 289-295.
[3] Hu Q H, Che X J, Zhang L, et al. Rank entropy based decision trees for monotonic classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11): 2052-2064.
[4] Guo Y G, Jiao L C, Wang S, et al. A novel dynamic rough subspace based selective ensemble[J]. Pattern Recognition, 2015, 48: 1638-1652.
[5] 黄兵, 魏大宽. 基于距离的直觉模糊粗糙集模型及应用[J]. 系统工程理论与实践, 2011, 31(7): 1356-1362.Huang B, Wei D K. Distance-based rough set model in intuitionistic fuzzy information systems and its application[J]. Systems Engineering-Theory & Practice, 2011, 31(7): 1356-1362.
[6] Li H X, Zhang L B, Huang B, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-Based Systems, 2016, 91: 241-251.
[7] 胡清华, 于达任. 应用粗糙计算[M]. 北京: 科学出版社, 2012.Hu Q H, Yu D R. Applied rough computing[M]. Beijing: Science Press, 2012.
[8] Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Science, 1993, 46(1): 39-59.
[9] Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research, 2002, 129(1): 1-47.
[10] Qian Y H, Zhang H, Sang Y L, et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2013, 55: 225-237.
[11] Ju H R, Yang X B, Dou H L, et al. Variable precision multigranulation rough set and attributes reduction[C]//Transactions on Rough Set XVⅢ, Springer, 2014: 52-68.
[12] Ju H R, Yang X B, Qi Y S, et al. Dynamic updating multigranulation fuzzy rough set: Approximations and reducts[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(6): 981-990.
[13] Yang X B, Qi Y, Yu H L, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64: 59-69.
[14] Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2-3): 191-209.
[15] Yang X B, Yang J Y. Incomplete information system and rough set theory: Models and attribute reductions[M]. Beijing: Science Press & Springer, 2012.
[16] Zhao Y, Yao Y Y, Luo F. Data analysis based on discernibility and indiscernibility[J]. Information Sciences, 2007, 177(22): 4959-4976.
[17] Palacios A M, Sánchez L, Couso I. Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data[J]. International Journal of Approximate Reasoning, 2011, 52(6): 841-862.
[18] Yang Q, Ling C, Chai X Y, et al. Test-cost sensitive classification on data with missing values[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(5): 626-638.
[19] Zhou Z H, Liu X Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 63-77.
[20] Yao Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences, 2011, 181: 1080-1096.
[21] Jia X Y, Liao W H, Tang Z M, et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219: 151-167.
[22] Li W T, Xu W H. Double-quantitative decision-theoretic rough set[J]. Information Sciences, 2015, 316: 54-67.
[23] Ju H R, Yang X B, Yu H L, et al. Cost-sensitive rough set approach[J]. Information Sciences, 2016, 355-356: 282-298.
[24] Min F, He H P, Qian Y H, et al. Test-cost-sensitive attribute reduction[J]. Information Sciences, 2011, 181(22): 4928-4942.
[25] Min F, Zhu W. Attribute reduction of data with error ranges and test costs[J]. Information Sciences, 2012, 211: 48-67.
[26] Min F, Hu Q H, Zhu, W. Feature selection with test cost constraint[J]. International Journal of Approximate Reasoning, 2014, 55(1): 167-179.
[27] 张显勇. 精度与程度逻辑差双量化粗糙集模型的属性约简[J]. 系统工程理论与实践, 2015, 35(11): 2925-2931.Zhang X Y. Attribute reduction for the double-quantitative rough set model based on logical difference of precision and grade[J]. Systems Engineering-Theory & Practice, 2015, 35(11): 2925-2931.

基金

国家自然科学基金(61572242,71671086,61473157);江苏省普通高校研究生科研创新计划项目(KYLX16_0021)
PDF(751 KB)

310

Accesses

0

Citation

Detail

段落导航
相关文章

/