多层同步网络在舆情仿真研究中的应用

沈乾, 刘怡君

系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (1) : 182-190.

PDF(1218 KB)
PDF(1218 KB)
系统工程理论与实践 ›› 2017, Vol. 37 ›› Issue (1) : 182-190. DOI: 10.12011/1000-6788(2017)01-0182-09
论文

多层同步网络在舆情仿真研究中的应用

    沈乾1,2, 刘怡君2,3
作者信息 +

Public opinion simulation research based on multilayer synchronization network

    SHEN Qian1,2, LIU Yijun2,3
Author information +
文章历史 +

摘要

为统筹考虑线上社交网络与线下社交网络在舆情传播中的作用,首次提出了一种包含“媒体层-线上层-线下层”的多层同步网络模型,并在此基础上搭建了舆情仿真系统框架.基于对人类社交网络拓扑结构的已有研究成果,给出了多层同步网络的缺省设定.通过案例仿真,分析了线上网络与线下网络之间的相互影响,对比了舆情事件目击者数量在多媒体传播、自媒体传播这两种舆论传播模式中的作用差异.最后,讨论了多层同步网络模型的兼容性与可扩展性,并指出了该模型改进的方向.

Abstract

For considering the role of both online social network and offline social network in the public opinion transmission, the multilayer synchronization network containing media layer, online layer and offline layer was built. And on this basis, public opinion simulation system framework was set up. Based on the research achievements of predecessors for human social network structure, multi-level synchronous network is given in the default setting. Through case simulation, demonstrated the mutual influence between online and offline networks and compared the different effect of the number of witness in the self-media communications and multimedia communications in the role of public opinion propagation. In the end, discussed the compatibility and scalability of the multilayer synchronous network model and put forward the improvement and extension direction.

关键词

多层同步网络 / 社会舆论传播 / 舆情仿真系统

Key words

multilayer synchronization network / public opinion transmission / public opinion simulation system

引用本文

导出引用
沈乾 , 刘怡君. 多层同步网络在舆情仿真研究中的应用. 系统工程理论与实践, 2017, 37(1): 182-190 https://doi.org/10.12011/1000-6788(2017)01-0182-09
SHEN Qian , LIU Yijun. Public opinion simulation research based on multilayer synchronization network. Systems Engineering - Theory & Practice, 2017, 37(1): 182-190 https://doi.org/10.12011/1000-6788(2017)01-0182-09
中图分类号: F224.33   

参考文献

[1] Alves S G, Oliveira NETO N M, Martins M L. Electoral surveys' influence on the voting processes: A cellular automata model[J]. Physica A: Statistical Mechanics and its Applications, 2002, 316(1/4): 601-614.
[2] 刘怡君. 基于多主体的舆情建模与仿真研究[J]. 上海理工大学学报, 2011, 33(2): 331-336.Liu Y J. Modeling and simulation of public opinion based on multi-agent system[J]. Journal of University of Shanghai for Science and Technology, 2011, 33(2): 331-336.
[3] 余永阳, 张明智, 胡晓峰, 等. 战争舆情演化建模研究[J]. 系统仿真学报, 2010, 22(3): 708-714.Yu Y Y, Zhang M Z, Hu X F, et al. Study on modeling of warfare public opinion[J]. Journal of System Simulation, 2010, 22(3): 708-714.
[4] 田艳玲, 徐学峰, 马晓兰, 等. 基于系统动力学的网络舆情影响因素分析[J]. 青岛大学学报(自然科学版), 2011(1): 72-77.Tian Y L, Xu X F, Ma X L, et al. Analysis of influencing factors of network public opinion baesd on system dynamics[J]. Journal of Qingdao University (Natural Science Edition), 2011(1): 72-77.
[5] Vazquez F, Krapivsky P L, Redner S. Constrained opinion dynamics: Freezing and slow evolution[J]. Journal of Physics A: Mathematical and General, 2003, 36(3): L61-L68.
[6] Martins A C R. Bayesian updating rules in continuous opinion dynamics models[J]. Journal of Stat Mech, 2009(2): P02017.
[7] 方薇, 何留进, 宋良图. 因特网舆情传播的协同元胞自动机模型[J]. 计算机应用, 2012(2): 399-402.Fang W, He L J, Song L T. Synergistic cellular automata model for dissemination of Internet public opinion[J]. Journal of Computer Applications, 2012(2): 399-402.
[8] Zeng J P, Zhang S Y, Wu C R, et al. Modeling topic propagating over the internet[J]. Mathematical and Computer Modeling of Dynamic Systems, 2009, 15(1): 83-93.
[9] 孙玲芳, 周加波, 林伟健,等. 基于BP 神经网络和遗传算法的网络舆情危机预警研究[J]. 情报杂志, 2014, 11: 18-24.Sun L F, Zhou J B, Lin W J, et al. On network public opinion crisis early warning based on the BP neural network and genetic algorithm[J]. Journal of Intelligence, 2014, 11: 18-24.
[10] Di Mare A, Latora V. Opinion formation models based on game theory[J]. International Journal of Modern Physics C, 2007, 18(9): 1377-1395.
[11] 王杨, 尤科本, 王梦瑶, 等. 基于博弈论的网络社区舆情传播模型[J]. 计算机应用研究, 2013, 30(8): 2480-2482.Wang Y, You K B, Wang M Y, et al. Model of network community public opinion spread based on game theory[J]. Journal of Computer Applications, 2013, 30(8): 2480-2482.
[12] Sznajd W K, Sznajd J. Opinion evolution in closed community[J]. International Journal of Modern Physics C, 2000, 11(6): 1157-1165.
[13] Sznajd-Weron K. Sznajd model and its applications[J]. arXiv Preprint Physics/0503239, 2005.
[14] Deffuant G, Neau D, Amblard F, et al. Mixing beliefs among interacting agents[J]. Advance in Complex Systems, 2000(3): 87-98.
[15] Weisbuch G, Deffuant G, Amblard F, et al. Meet, discuss, and segregate[J]. Complexity, 2002, 7(3): 55-63.
[16] Hegselmann R, Krause U. Opinion dynamics and bounded confidence models, analysis, and simulation[J]. Journal of Artificial Societies and Social Simulation, 2002, 5(3): 1-33.
[17] Galam S. Minority opinion spreading in random geometry[J]. Eur Phys J B, 2002, 25: 403-406.
[18] Galam S. Sociophysics: A review of Galam models[J]. International Journal of Modern Physics C, 2008, 19(3): 409-440.
[19] Sudbury A. The proportion of the population never hearing a rumour[J]. Journal of Applied Probability, 1985: 443-446.
[20] Leskovec J, McGlohon M, Faloutsos C, et al. Patterns of cascading behavior in large blog graphs[C]//SDM, 2007, 7: 551-556.
[21] Damián H Z. Dynamics of rumor propagation on small-world networks[J]. Phys Rev (S1539-3755), 2002, 65: 041908(R).
[22] May R M, Lloyd A L. Infection dynamics on scale-free networks[J]. Phys Rev E (S1539-3755), 2001, 64(6): 066112.
[23] Ugander J, Karrer B, Backstrom L, et al. The anatomy of the Facebook social graph[J]. arXiv Preprint arXiv: 1111.4503, 2011.
[24] Burke M, Kraut R, Marlow C. Social capital on Facebook: Differentiating uses and users[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2011: 571-580.
[25] Newman M E J, Park J. Why social networks are different than other types of networks[J]. Phys Rev E, 2003, 68(3): 036122.
[26] Albert R, Jeong H, Barabási A L. The diameter of the world-wide web[J]. Nature (S0028-0836), 1999, 401(9): 130-131.
[27] Dunbar R I M. Neocortex size as a constraint on group size in primates[J]. Journal of Human Evolution, 1992, 22(6): 469-493.
[28] Dunbar R I M. Coevolution of neocortical size, group size and language in humans[J]. Behavioral and Brain Sciences, 1993, 16(4): 681-694.
[29] Erdös P, Rényi A. On the strength of connectedness of a random graph[J]. Acta Mathematica Hungarica, 1961, 12(1): 261-267.
[30] Batagelj V, Brandes U. Efficient generation of large random networks[J]. Physical Review E, 2005, 71(3): 036113.
[31] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[32] Watts D J, Strogatz S H. Collective dynamics of ‘small world’ networks[J]. Nature (S0028-0836), 1998, 393: 440-442.

基金

国家自然科学基金(71573247,91024010,91324009);中国科学院青年创新促进会项目(2014139)
PDF(1218 KB)

581

Accesses

0

Citation

Detail

段落导航
相关文章

/