灰色预测模型的模拟序列是齐次指数序列,而实际应用中大量存在着近似非齐次指数序列,为了解决这个问题,在已有研究的基础上,提出了一阶反向累加NHGM(1,1,k)模型和分数阶反向累加NHGM(1,1,k)模型.分析了两种模型的扰动界,并对一阶反向累加NHGM(1,1,k)模型和分数阶反向累加NHGM(1,1,k)模型的计算公式进行了推导,给出了两类模型适用于小样本建模的原因.由于充分利用了系统的新信息,分数阶反向累加NHGM(1,1,k)模型的预测精度更高,实例分析发现其解的稳定性更好.最后,将分数阶反向累加NHGM(1,1,k)模型运用在具有多个研制阶段的某型号武器装备可靠度的预测上,取得了较高的预测精度.
Abstract
The simulation sequence of grey forecasting model is homogeneous exponential sequence. However, there exist a large number of the approximate inhomogeneous sequences in the practical application. The first order reverse accumulative NHGM(1, 1, k) (FTORA-NHGM(1, 1, k)) model and fractional order reverse accumulative NHGM(1, 1, k) (FORA-NHGM(1, 1, k)) model were proposed on the basis of previous research. The perturbation bounds of the two models were analyzed, and the calculation formulas of the FTORA-NHGM(1, 1, k) model and FORA-NHGM(1, 1, k) model were derived. The reason that the two models were suitable for small samples was given. The FORA-NHGM(1, 1, k) model has higher prediction accuracy because it takes full advantage of the new information of the system. It was found that the solution of the FORA-NHGM(1, 1, k) model has higher stability through the instance analysis. Finally, the FORA-NHGM(1, 1, k) model was used in the prediction of the reliability degree of a certain type of weapon with multiple development phase, and higher prediction was achieved.
关键词
灰色预测 /
反向累加 /
分数阶 /
复杂装备
{{custom_keyword}} /
Key words
grey prediction /
reverse accumulation /
fractional order /
complex equipment
{{custom_keyword}} /
中图分类号:
N941.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Deng J L. The control problem of grey systems[J]. System & Control Letter, 1982, 1(5):288-294.
[2] 邓聚龙. 灰色控制系统[M]. 武汉:华中工学院出版社, 1985. Deng J L. Grey control systems[M]. Wuhan:Press of Huazhong University of Science and Technology, 1985.
[3] Liu S F, Lin Y. Grey systems:Theory and applications[M]. London:Springer, 2011.
[4] Liu S F, Lin Y. Grey informatiore:Theory and practical applications[M]. London:Springer, 2006.
[5] 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 5版. 北京:科学出版社, 2010.Liu S F, Dang Y G, Fang Z G, et al. Grey system theory and its application[M]. 5th ed. Beijing:Science Press, 2010.
[6] Lei M L, Feng Z R. A proposed grey model for short-term electricity price forecasting in competitive power markets[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):531-538.
[7] 党耀国, 刘思峰, 刘斌. x(1)(n) 为初始条件GM模型[J]. 中国管理科学, 2005(1):132-134. Dang Y G, Liu S F, Liu B. The GM models that x(1)(n) be taken as initial value[J]. Chinese Journal of Management Science, 2005(1):132-134.
[8] Li D C, Chang C J, Chen C C, et al. Forecasting short-term electricity consumption using the adaptive grey-based approach——An Asian case[J]. Omega, 2012, 40(6):767-773.
[9] Wei Y, Kong X H, Hu D H. A kind of universal constructor method for buffer operators[J]. Grey Systems:Theory and Application, 2011, 1(2):178-185.
[10] Xie N M, Liu S F, Yang Y J, et al. On novel grey forecasting model based on non-homogeneous index sequence[J]. Applied Mathematical Modelling, 2013, 37(7):5059-5068.
[11] Li D C, Chang C J, Chen C C, et al. A grey-based fitting coefficient to build a hybrid forecasting model for small data sets[J]. Applied Mathematical Modelling, 2012, 36(10):5101-5108.
[12] 崔杰, 党耀国, 刘思峰. 一种新的灰色预测模型及其建模机理[J]. 控制与决策, 2009, 24(11):1702-1706. Cui J, Dang Y G, Liu S F. Novel grey forecasting model and its modeling mechanism[J]. Control and Decision, 2009, 24(11):1702-1706.
[13] 战立青, 施化吉. 近似非齐次指数数据的灰色建模方法与模型[J]. 系统工程理论与实践, 2013, 33(3):689-694. Zhan L Q, Shi H J. Methods and model of grey modeling for approximation non-homogenous exponential data[J]. Systems Engineering——Theory & Practice, 2013, 33(3):689-694.
[14] 宋中民, 邓聚龙. 反向累加生成及灰色GOM(1,1)模型[J]. 系统工程, 2001, 19(1):66-69. Song Z M, Deng J L. The accumulated generating operation in opposite direction and its use in grey model GOM(1,1)[J]. Systems Engineering, 2001, 19(1):66-69.
[15] 刘金英, 杨天行, 王淑玲. 反向GOM(1,1)模型参数的直接求解方法[J]. 吉林大学学报(工学版), 2003, 33(2):75-79. Liu J Y, Yang T X, Wang S L. Directed method for computing parameters of GOM(1,1)[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(2):75-79.
[16] 杨知, 任鹏, 党耀国. 反向累加生成与灰色GOM(1,1)模型的优化[J]. 系统工程理论与实践, 2009, 29(8):160-164. Yang Z, Ren P, Dang Y G. Grey opposite-direction accumulated generating and optimization of GOM(1,1) model[J]. Systems Engineering——Theory & Practice, 2009, 29(8):160-164.
[17] 练郑伟, 党耀国, 王正新. 反向累加生成的特性GOM(1,1)模型的优化[J]. 系统工程理论与实践, 2013, 33(9):2306-2312. Lian Z W, Dang Y G, Wang Z X. Properties of accumulated generating operation in opposite-direction and optimization of GOM(1,1) model[J]. Systems Engineering——Theory & Practice, 2013, 33(9):2306-2312.
[18] Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7):1775-1785.
[19] Wu L F, Liu S F, Chen D, et al. Using gray model with fractional order accumulation to predict gas emission[J]. Natural Hazards, 2014, 71(3):2231-2236.
[20] Wu L F, Liu S F, Yao L G, et al. Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model[J]. Soft Computing, 2015, 19(2):483-488.
[21] Wu L F, Liu S F, Fang Z G, et al. Properties of the GM(1,1) with fractional order accumulation[J]. Applied Mathematics and Computation, 2015, 252:287-293.
[22] 孙继广. 矩阵扰动分析[M]. 北京:利学出版社, 1987:355-356. Sun J G. Matrix disturbance analysis[M]. Beijing:Science Press, 1987:355-356.
[23] Stewart G M. On the perturbation of pseudo-inverses, projections and linear square problems[J]. SIAM Review, 1977(19):634-662.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
欧盟第7研究框架玛丽·居里国际人才引进计划(FP7-PIIF-GA-2013-629051);国家自然科学基金(71401051);国家自然科学基金与英国皇家学会国际合作交流项目(71111130211);国家社会科学基金资助重点项目(12AZD102)
{{custom_fund}}