本文指出, 在多准则排序中层次分析法用矩阵乘法实现排序度量转换是不正确的. 实际上排序度量转换与把排序指标的重要性传递到目标的路径有关, 多准则排序是多路径的, 多路径排序度量转换不是线性转换, 不能用矩阵乘法实现. 为此, 将排序度量映射到高维状态空间上、用不确定性隶属度向量表征, 进而把排序度量转换转化为隶属度转换. 通过揭示指标隶属度中包含着确定目标隶属度的冗余值来论证隶属度转换是非线性转换, 用区分权滤波算法实现隶属度非线性转换. 由此建立多准则排序的非线性排序模型.
Abstract
It is pointed out that multi-criteria ranking metric transformation is realized by matrix multiplication in AHP is wrong. In fact this kind of transformation is concerned with path. Multi-criteria ranking is multipath. Multipath ranking metric transformation is nonlinear and can't use matrix multiplication. So ranking metric is mapped into high dimensional spaces and is expressed by uncertain membership vector. Then ranking metric transformation is changed into membership transformation. It is proved that membership transformation is nonlinear and can be realized by classification weight filter. Nonlinear ranking model of multi-criteria is built up.
关键词
层次分析法 /
多准则排序 /
排序度量转换 /
非线性 /
区分权滤波
{{custom_keyword}} /
Key words
AHP /
multi-criteria ranking /
ranking metric transformation /
nonlinear /
classification weight filter
{{custom_keyword}} /
中图分类号:
O29
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Satty T L. Modeling unstructured decision problems——The theory of analytic hierarchy[J]. Mathematics and Computers in Simulation, 1978, 20(3): 147-158.
[2] 许树柏. 层次分析法原理[M]. 天津: 天津大学出版社, 1989. Xu Shubo. Principles in analytical hierarchy process[M]. Tianjin: Tianjin University Press, 1989.
[3] 王莲芳,许树柏. 层次分析法引论[M]. 北京: 中国人民大学出版社, 1990.Wang Lianfang, Xu Shubo. Introduction to analytic hierarchy process[M]. Beijing: China Renmin University Press, 1990.
[4] Thomas L S. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83-98.
[5] 刘胜, 张玉廷,于大泳. 小生境遗传算法修正三角模糊数互补判断矩阵一致性及排序[J]. 系统工程理论与实践, 2011, 31(3): 522-529.Liu Sheng, Zhang Yuting, Yu Dayong. Consistency improvement and priority of triangular fuzzy number complementary judgment matrix based on niche genetic algorithm[J]. Systems Engineering——Theory & Practice, 2011, 31(3): 522-529.
[6] Gong L X, Tang L, Yang M Z. Research and application on QFD based on fuzzy analytic hierarchy process[J]. Applied Mechanics and Materials, 2010, 29(32): 2516-2520.
[7] Li J W. Risk assessment model of high speed craft navigation based on fuzzy analytic hierarchy process[J]. Journal of Computational Information Systems, 2009, 5(6): 1661-1667.
[8] Hadi V A, Niazi M M. An improved voting analytic hierarchy process-data envelopment analysis methodology for suppliers selection[J]. International Journal of Computer Integrated Manufacturing, 2011, 24(3): 189-197.
[9] Li Y F, Zhu L P. Product usability evaluation method based on fuzzy analytic hierarchy process[J]. Journal of Mechanical Engineering, 2012, 48(14): 183-191.
[10] Yuen K K F. Membership maximization prioritization methods for fuzzy analytic hierarchy process[J]. Fuzzy Optimization and Decision Making, 2012, 11(2): 113-133.
[11] Bilgen B, Sen M. Project selection through fuzzy analytic hierarchy process and a case study on six sigma implementation in an automotive industry[J]. Production Planning and Control, 2012, 23(1): 2-25.
[12] Anagnostopoulos K, Vavatsikos A. Site suitability analysis for natural systems for wastewater treatment with spatial fuzzy analytic hierarchy process[J]. Journal of Water Resources Planning and Management, 2012, 138(2): 125-134.
[13] 姚敏. 一种实用的模糊层次法[J]. 软科学, 1990(1): 46-52. Yao Min. A practical fuzzy analytic hierarchy process method[J]. Soft Science, 1990(1): 46-52.
[14] 张吉军. 模糊层次分析法[J]. 模糊系统与数学, 2000, 14(2): 80-88.Zhang Jijun. Fuzzy analytical hierarchy process[J]. Fuzzy Systems and Mathematics, 2000, 14(2): 80-88.
[15] Arrington J W. The analysis of components, design, and operation for electric propulsion and integrated electrical system[R]. California: Naval Postgraduate School, 1998.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(60874116, 61375003)
{{custom_fund}}