无标度网络中遗忘率变化的谣言传播模型研究

王筱莉, 赵来军, 谢婉林

系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (2) : 458-465.

PDF(764 KB)
PDF(764 KB)
系统工程理论与实践 ›› 2015, Vol. 35 ›› Issue (2) : 458-465. DOI: 10.12011/1000-6788(2015)2-458
论文

无标度网络中遗忘率变化的谣言传播模型研究

    王筱莉1, 赵来军2, 谢婉林1
作者信息 +

Rumor spreading model with variable forgetting rate in scale-free network

    WANG Xiao-li1, ZHAO Lai-jun2, XIE Wan-lin1
Author information +
文章历史 +

摘要

本文在无标度网络中研究了遗忘率随时间变化的谣言传播模型, 推导出了对应的平均场方程, 并在社交网络人人网中就遗忘率对谣言传播过程的影响进行了数值模拟. 结果表明: 遗忘率对谣言传播的最终规模有重要影响, 初始遗忘率越大或遗忘速度越大, 谣言的最终传播规模越小; 与遗忘率为常数的谣言传播模型相比, 谣言在遗忘率随时间变化的模型中传播规模更小. 研究还表明, 网络结构对谣言传播也有重要影响, 谣言在无标度网络中的传播速度比在均匀网络中更快, 最终传播规模更小.

Abstract

This paper studies the rumor spreading model with a function of forgetting rate changing over time in scale-free networks. The corresponding mean-field equations are derived. Further, numerical simulations are conducted on Renren Network, an online social platform, to better understand the performance of the model. Results show that forgetting rate has a significant impact on the final size of rumor spreading: the larger the initial forgetting rate or the faster the forgetting speed, the smaller the final size of the rumor spreading; The final size of rumor spreading is much smaller under variable forgetting rate compared to that under a constant forgetting rate. Simulations also show that the spreading speed is faster and the final size is smaller in scale-free network than in homogeneous network.

关键词

谣言传播 / 无标度网络 / 均匀网络 / 遗忘率

Key words

rumor spreading model / scale-free network / homogeneous network / variable forgetting rate

引用本文

导出引用
王筱莉 , 赵来军 , 谢婉林. 无标度网络中遗忘率变化的谣言传播模型研究. 系统工程理论与实践, 2015, 35(2): 458-465 https://doi.org/10.12011/1000-6788(2015)2-458
WANG Xiao-li , ZHAO Lai-jun , XIE Wan-lin. Rumor spreading model with variable forgetting rate in scale-free network. Systems Engineering - Theory & Practice, 2015, 35(2): 458-465 https://doi.org/10.12011/1000-6788(2015)2-458
中图分类号: G20   

参考文献

[1] Bhavnani R, Findley M G, Kuklinski J H. Rumor dynamics in ethnic violence[J]. The Journal of Politics, 2009, 71: 876-892.
[2] Daley D J, Kendall D G. Epidemics and rumours[J]. Nature, 1964, 204: 1118.
[3] Maki D, Thomson M. Mathematical models and applications[M]. Prentice-Hall, Engle-wood Cliffs, 1973.
[4] Lefevre C, Picard P. Distribution of the final extent of a rumor process[J]. Journal of Applied Probability, 1994, 31: 244-249.
[5] Pittel B. On a Daley-Kendall model of random rumors[J]. Journal of Applied Probability, 1990, 27: 14-27.
[6] Kawachi K, Seki M, Yoshida H, et al. A rumor transmission model with various contact interactions[J]. Journal of Theoretical Biology, 2008, 253(1): 55-60.
[7] Sudbury A. The proportion of population never hearing a rumour[J]. Journal of Applied Probability, 1985, 22: 443-446.
[8] Chierichetti F, Lattanzi S, Panconesi A. Rumor spreading in social networks[J]. Theoretical Computer Science, 2011, 412: 2602-2610.
[9] Doerr B, Fouz M, Friedrich T. Social networks spread rumors in sublogarithmic time[J]. Electronic Notes in Discrete Mathematics, 2011, 38: 303-308.
[10] Zanette D H. Critical behavior of propagation on small-world networks[J]. Physical Review E, 2001, 64(5): 050901.
[11] Zanette D H. Dynamics of rumor propagation on small-world networks[J]. Physical Review E, 2002, 65(4): 041908.
[12] Moreno Y, Nekovee M, Pacheco A. Dynamics of rumor spreading in complex networks[J]. Physical Review E, 2004, 69(6): 066130.
[13] Nekovee M, Moreno Y, Bianconi G, et al. Theory of rumor spreading in complex social networks[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(1): 457-470.
[14] Zhao L J, Wang Q, Cheng J J, et al. Rumor spreading model with consideration of forgetting mechanism: A case of online blogging Live Journal[J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(13): 2619-2625.
[15] Zhao L J, Wang J J, Chen Y C, et al. SIHR rumor spreading model in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(7): 2444-2453.
[16] 王筱莉, 赵来军. 社会网络中具有怀疑机制的谣言传播模型[J]. 上海理工大学学报, 2012, 34(5): 424-428. Wang Xiaoli, Zhao Laijun. Rumor spreading model with skepticism mechanism in social networks[J]. University of Shanghai for Science and Technology, 2012, 34(5): 424-428.
[17] Zhao L J, Wang X L, Qiu X Y, et al. A model for the spread of rumors in Barrat-Barthelemy-Vespignani networks[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(21): 5542-5551.
[18] Wei L, Jiao G, Xu C. Message spreading and forget-remember mechanism on a scale-free network[J]. Chinese Physics Letters, 2008, 25(6): 2303-2306.
[19] Gu J, Li W, Cai X. The effect of the forget-remember mechanism on spreading[J]. The European Physical Journal B, 2008, 62(2): 247-255.
[20] Zhao L J, Xie W L, Gao O H, et al. A rumor spreading model with variable forgetting rate[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(23): 6144-6154.
[21] Fu F, Chen X J, Liu L H, et al. Social dilemmas in an online social network: The structure and evolution of cooperation[J]. Physics Letters A, 2007, 371(1): 58-64.

基金

国家自然科学基金重大研究计划项目(90924030); 都市社会发展与智慧城市建设085 项目(085SHDX001);国家社会科学基金(14BTQ026)

PDF(764 KB)

540

Accesses

0

Citation

Detail

段落导航
相关文章

/