
分数阶累加时滞GM(1,N,τ)模型及其应用
Fractional order accumulation time-lag GM(1,N,τ) model and its application
基于系统的时滞性, 本文建立了时滞灰色GM(1,N,τ)模型, 给出了模型的最小二乘参数估计公式以及模型的解析解.在引入分数阶累加生成算子后, 将原模型扩展为分数阶累加GM(1,N,τ) 模型, 当时滞值为非整数情况时, 采用相邻整数点加权构造法, 完善了模型; 通过粒子群算法确定模型最优的分数阶累加生成阶数. 最后本文结合武汉市1995-2008年14 年科技投入及经济增长的实际背景, 分别建立了经典时滞GM(1,N,τ)和分数阶累加时滞GM(1,N,τ) 模型对GDP数据做了预测, 比较了两个模型预测结果, 发现分数阶累加时滞GM(1,N,τ) 模型具有更高的建模精度.
Based on the time lag effect of system, this paper constructs the time-lag GM(1,N,τ) model, and provides its least squares parameter estimation formula and analytical solution. Then introducing fractional order accumulation generation operator, GM(1,N,τ) is transformed into fractional order accumulation time-lag GM(1,N,τ), offering adjacent integer points weighted method when time-lag value is not integer, determining the time-lag value via particle swarm optimization. Finally, we test the original GM(1,N,τ) and fractional order accumulation time-lag GM(1,N,τ) by using the real data of R&D investment and GDP in Wuhan from 1995 to 2008. The example indicates that the accuracy of fractional order accumulation time-lag GM(1,N,τ) is more satisfactory.
灰色模型 / GM(1,N,τ / )模型 / 分数阶累加生成 / 时滞 / 粒子群算法 {{custom_keyword}} /
grey model / GM(1,N,τ / ) model / fractional order accumulation / time-lag / particle swarm optimization {{custom_keyword}} /
[1] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社, 2008: 282-300.Deng Julong. Grey theory foundation[M]. Wuhan: Huazhong University of Science & Technology Press, 2008: 282-300.
[2] 肖新平,宋中民,李峰.灰技术基础及其应用[M].北京:科学出版社, 2005: 117-123.Xiao Xinping, Song Zhongmin, Li Feng. Grey technology foundation and its application[M]. Beijing: Science Press, 2005: 117-123.
[3] 刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M]. 5版.北京:科学出版社, 2010: 169-171.Liu Sifeng, Dang Yaoguo, Fang Zhigeng, et al. Grey system theory and its application[M]. 5th ed. Beijing: Science Press, 2010: 169-171.
[4] 翟军,盛建明,冯英浚. MGM(1,N)灰色模型及应用[J].系统工程理论与实践, 1997, 17(5): 109-113.Zhai Jun, Sheng Jianming, Feng Yingjun. The grey model MGM(1,N) and its application[J]. Systems Engineering —— Theory & Practice, 1997, 17(5): 109-113.
[5] 李小霞,同小军,陈绵云. 多因子灰色MGMp(1,N)优化模型[J]. 系统工程理论与实践, 2003, 23(4): 47-51.Li Xiaoxia, Tong Xiaojun, Chen Mianyun. MGMp(1,N) optimization model[J]. Systems Engineering —— Theory & Practice, 2003, 23(4): 47-51.
[6] 张高锋,姜国辉,付永锋,等. 灰色 GM(1,N)自记忆模型研究[J]. 沈阳农业大学学报, 2009, 40(2): 210-214.Zhang Gaofeng, Jiang Guohui, Fu Yongfeng, et al. Establishment of the grey GM(1,N) self-memory model[J]. Journal of Shenyang Agricultural University, 2009, 40(2): 210-214.
[7] 周伟,方志耕.非线性优化GM(1,N)模型及其应用研究[J].系统工程与电子技术, 2010, 32(2): 317-320.Zhou Wei, Fang Zhigeng. Nonlinear optimization method of gray GM(1,N) model and application[J]. Systems Engineering and Electronics, 2010, 32(2): 317-320.
[8] 翟军,冯英俊,盛建明.带有时滞的GM(1,2)模型及应用[J].系统工程, 1996, 14(6): 66-68.Zhai Jun, Feng Yingjun, Sheng Jianming. A time lag existing GM(1,2) model and its application[J]. Systems Engineering, 1996, 14(6): 66-68.
[9] 郝永红,黄登宇,高红波,等. 娘子关泉水流量的GM(1,2)时滞预测模型[J].中国岩溶, 2004(3): 43-47.Hao Yonghong, Huang Dengyu, Gao Hongbo, et al. GM(1,2) time lag model for discharge of Niangziguan Spring[J]. Carsologica Sinica, 2004(3): 43-47.
[10] Hao Y H, Wang Y J, Zhao J J, et al. Grey system model with time lag and application to simulation of karst spring discharge[J]. Grey Systems: Theory and Application, 2011, 1(1): 47-56.
[11] Wu L F, Liu S F, Yao L G, et al. Grey system model with the fractional order accumulation[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(7): 1775-1785.
[12] 屈婉玲.组合数学[M].北京:北京大学出版社, 1989, 11: 48-51.Qu Wanling. Combinatorial mathematics[M]. Beijing: Beijing University Press, 1989, 11: 48-51.
[13] 武汉市统计局.武汉市统计年鉴[R].北京:中国统计出版社, 2010: 3-20, 56-70.Wuhan Statistics Bureau. Wuhan statistical yearbook[R]. Beijing: China Statistics Press, 2010: 3-20, 56-70.
[14] 武汉市科学技术局,武汉市统计局.武汉科技统计年鉴[R].武汉:武汉市统计局, 2008: 29-36.Wuhan Science and Technology Bureau, Wuhan Statistics Bureau. Wuhan statistical yearbook of science and technology[R]. Wuhan: Wuhan Statistics Bureau, 2008: 29-36.
[15] 肖新平, 毛树华. 灰预测与决策方法[M].北京:科学出版社, 2013: 86-88.Xiao Xinping, Mao Shuhua. The method of grey prediction and decision[M]. Beijing: Science Press, 2013: 86-88.
教育部人文社会科学基金(11YJC630155); 中国博士后科学基金特别资助(2013T60755);中国博士后科学基金(2012 M521487); 中央高校自主创新研究基金(2012-Ia-034)
/
〈 |
|
〉 |