针对城市供水系统受外界威胁导致供应能力波动的问题, 建立了以优化供水系统弹性为目标的两阶段应对策略模型. 第一阶段为马尔可夫决策过程水库调度模型, 求解在满足期望弹性约束下以总成本最小化为目标的优化调度策略; 当供应缺口超出水库调度能力时, 针对供水系统在动态情景下的不确定性, 建立了以供水网络弹性损失最小为目标的系统动力学第二阶段模型, 通过仿真实验得到了多渠道优化策略. 最后, 以上海市咸潮入侵事件验证了该方法的有效性和实用性.
Abstract
In order to deal with the capacity fluctuation problem of water supply system caused by external threatens, a two-stage strategy model is proposed to optimize system resilience. The first stage is a Markov decision process model for reservoir scheduling, the objective of which is to derive the optimal scheduling strategy with minimal scheduling cost under the constraint of resilience target. When the shortage of water supply exceeds the capacity of reservoir scheduling, the second stage establishes a system dynamic model in order to minimize the satisfaction loss during the dynamic and uncertain disruption scenarios, and the multi-sourcing contingency are derived through the simulation results. Finally, the effectiveness of the proposed method is illustrated by a case study of Shanghai water supply system under salt tide.
关键词
系统弹性 /
供水系统 /
马尔可夫决策过程 /
系统动力学
{{custom_keyword}} /
Key words
system resilience /
water supply system /
Markov decision processes /
system dynamics
{{custom_keyword}} /
中图分类号:
N949
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩晓刚, 黄廷林. 我国突发性水污染事件统计分析[J]. 水资源保护, 2010, 26(1): 84-90. Han Xiaogang, Huang Tinglin. Statistical analysis of sudden water pollution accidents[J]. Water Resources Protection, 2010, 26(1): 84-90.
[2] Yazdani A, Otoo R A, Jeffrey P. Resilience enhancing expansion strategies for water distribution systems: A network theory approach[J]. Environmental Modelling & Software, 2011, 26(12): 1574-1582.
[3] Wong T H, Brown R R. The water sensitive city: principles for practice[J]. Water Science & Technology - WST, 2009, 60(3): 673-682.
[4] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
[5] Hashimoto T, Loucks D P, Stedinger J. Reliability, resilience and vulnerability for water resources system performance evaluation[J]. Water Resources Research, 1982, 18(1): 14-20.
[6] Fowler H J, Kilsby C G, O'Connell P E. Modeling the impacts of climatic change on the reliability, resilience, and vulnerability of a water resource system[J]. Water Resources Research, 2003, 39(8): 95-109.
[7] Li Y, Lence J B. Estimating resilience for water resources systems[J]. Water Resources Research, 2007, 43(7): W07422. doi:10.1029/2006WR005636.
[8] Zhuang B, Lansey K, Kang D. Resilience/availability analysis of municipal water distribution system incorporating adaptive pump operation[J]. Journal of Hydraulic Engineering, 2013, 139(5): 527-537.
[9] Todini E. Looped water distribution networks design using a resilience index based heuristic approach[J]. Urban Water, 2000, 2(2): 115-122.
[10] Qiao J H, Jeong D, Lawley M, et al. Allocating security resources to a water supply network[J]. IIE Transactions, 2007, 39(1): 95-109.
[11] Hwang H, Forrester A, Lansey K. Resilience of regional water supply systems[C]// World Environmental and Water Resources Congress, Cincinnati, Ohio, USA, 2013: 946-954.
[12] Wang C H, Blackmore J M. Resilience concepts for water resource systems[J]. Journal of Water Resources Planning and Management, 2009, 135(6): 528-536.
[13] Gay L, Sinha S. Novel resilience assessment methodology for water distribution systems[C]// Pipelines Conference, Miami Beach, Florida, USA, 2012: 61-69.
[14] Liu D D, Chen X H, Nakato T. Resilience assessment of water resources systems[J]. Water Resources Management, 2012, 26(13): 3743-3755.
[15] 葛怡, 史培军, 徐伟, 等. 恢复力研究的新进展与评述[J]. 灾害学, 2010, 25(3): 119-124. Ge Yi, Shi Peijun, Xu Wei, et al. Review and development of restoring force research[J]. Journal of Catastrophology, 2010, 25(3): 119-124.
[16] 姜庆国, 穆东. 基于SD的煤炭企业煤层气发电项目的经济平衡性[J]. 系统工程理论与实践, 2013, 33(5): 1207-1216. Jiang Qingguo, Mu Dong. Analysis of economic balance of coalbed methane power projects based on system dynamics[J]. Systems Engineering - Theory & Practice, 2013, 33(5): 1207-1216.
[17] 卫海. 长江口咸潮入侵对上海市(中心城区)供水调度的影响[J]. 城市公用事业, 2005, 19(6): 18-20. Wei Hai. Effect of salt tide invasion at the Changjiang river estuary on water supply in Shanghai City (central urban area)[J]. Public Utilities, 2005, 19(6): 18-20.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重大研究计划(91024031, 91024013); 国家自然科学基金(91324011); 教育部博士点基金(201300 73110040)
{{custom_fund}}