食源性疾病由于其症状轻重不一常被低估, 但近年来, 食源性疾病的爆发在全国范围内呈上升趋势, 准确探测食源 性疾病事件并对其进行风险评估有重要意义. 本文分别对哨点医院监测数据、食品检测数据和来自互联网的数据建立事件 探测模型, 实现风险评估, 并分析比较模型优劣, 最后建立统一的时空框架, 引入人口、 交通、食品生产等大数据 对风险预测结果进行综合集成. 通过对某大城市2014年食源性疾病事件的探测结果对比, 实证结果表明, 综合模型预测的时空精度更高, 对防控更具操作性.
Abstract
Foodborne diseases are usually underreported due to its various symptoms. It has emerged to be a critical burden of public health in China. Auto detection of foodborne disease event and risk assessment based on it are helpful to prevent and control its outbreak. We design three different event detection models according to three different kinds of data from disease surveillance system, food detection system and social media. By the integrated spatio-temporal data framework and the imported big-data of population, traffic, and food production and sales, the final model performs better than the isolated ones in spatial and temporal dimensions. This is testified by the results on the data of one city of China in 2014.
关键词
食源性疾病 /
大数据 /
事件探测 /
风险评估 /
集成时空框架
{{custom_keyword}} /
Key words
foodborne disease /
big data /
event detection /
risk assessment /
integrated spatio-temporal framework
{{custom_keyword}} /
中图分类号:
TP391
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gould L H, Walsh K A, Vieira A R, et al. Surveillance for foodborne disease outbreaks - United States, 1998-2008[J]. MMWR Surveillance Summaries, 2013, 62(2): 1-34.
[2] Liu X, Chen Y, Wang X, et al. Foodborne disease outbreaks in China from 1992 to 2001 national foodborne disease surveillance system[J]. Journal of Hygiene Research, 2004, 33(6): 725-727.
[3] 张辉, 刘奕. 基于 "情景-应对" 的国家应急平台体系基础科学问题与集成平台[J]. 系统工程理论与实践, 2012, 32(5): 947-953.Zhang Hui, Liu Yi. Key problems on fundamental science and technology integration in "scenario-response" based national emergency response platform system[J]. Systems Engineering - Theory & Practice, 2012, 32(5): 947-953.
[4] Mead P S, Slutsker L, Dietz V, et al. Food-related illness and death in the United States[J]. Emerging Infectious Diseases, 1999, 5(5): 607-625.
[5] Scallan E, Hoekstra R M, Angulo F J, et al. Foodborne illness acquired in the United States-major pathogens[J]. Emerging Infectious Diseases, 2011, 17(1): 7-15.
[6] Voetsch A C, Van Gilder T J, Angulo F J, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States[J]. Clinical Infectious Diseases, 2004, 38: S127-S134.
[7] Jones T F, McMillian M B, Scallan E, et al. A population-based estimate of the substantial burden of diarrhoeal disease in the United States; FoodNet, 1996-2003[J]. Epidemiology and Infection, 2007, 135(2): 293-301.
[8] Flint J A, Van Duynhoven Y T, Angulo F J, et al. Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: An international review[J]. Clinical Infectious Diseases, 2005, 41(5): 698-704.
[9] Kuchenmüller T, Hird S, Stein C, et al. Estimating the global burden of foodborne diseases - A collaborative effort[J]. Eurosurveillance, 2009, 14(18): 19-22.
[10] Wong W K, Moore A, Cooper G, et al. Rule-based anomaly pattern detection for detecting disease outbreaks[C]// AAAI/IAAI, 2002: 217-223.
[11] Heino J, Toivonen H. Automated detection of epidemics from the usage logs of a physicians' reference database[M]// Knowledge Discovery in Databases: PKDD 2003. Springer Berlin Heidelberg, 2003: 180-191.
[12] Neill D B, Moore A W. A fast multi-resolution method for detection of significant spatial disease clusters[C]// Advances in Neural Information Processing Systems, 2003.
[13] Bernardo T M, Rajic A, Young I, et al. Scoping review on search queries and social media for disease surveillance: A chronology of innovation[J]. Journal of Medical Internet Research, 2013, 15(7): 239-251.
[14] Harris J K, Mansour R, Choucair B, et al. Health department use of social media to identify foodborne illness - Chicago, Illinois, 2013-2014[J]. MMWR-Morbidity and Mortality Weekly Report, 2014, 63(32): 681-685.
[15] Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// KDD, 1996, 96(34): 226-231.
[16] Barron F H, Barrett B E. Decision quality using ranked attribute weights[J]. Management Science, 1996, 42(11): 1515-1523.
[17] Barron F H. Selecting a best multiattribute alternative with partial information about attribute weights[J]. Acta Psychologica, 1992, 80(1): 91-103.
[18] Jia J, Fischer G W, Dyer J S. Attribute weighting methods and decision quality in the presence of response error: A simulation study[J]. Journal of Behavioral Decision Making, 1998, 11(2): 85-105.
[19] Mihalcea R, Tarau P. TextRank: Bringing order into texts[D]. Association for Computational Linguistics, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(41371386, 91224006);卫生部行业专项(201302005)
{{custom_fund}}