Weibull分布下操作风险监管资本及度量精度灵敏度

张明善, 唐小我, 莫建明

系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (8) : 1932-1943.

PDF(508 KB)
PDF(508 KB)
系统工程理论与实践 ›› 2014, Vol. 34 ›› Issue (8) : 1932-1943. DOI: 10.12011/1000-6788(2014)8-1932
论文

Weibull分布下操作风险监管资本及度量精度灵敏度

    张明善1, 唐小我2, 莫建明3
作者信息 +

Sensitivity of operational risk’s regulatory capital and measurement accuracy in the Weibull distribution

    ZHANG Ming-shan1, TANG Xiao-wo2, MO Jian-ming3
Author information +
文章历史 +

摘要

根据操作风险价值不确定度的合成机理,假设操作损失强度为Weibull分布,导出高置信度下重尾性操作风险监管资本的标准差与置信区间. 进而以弹性分析方法对监管资本及其度量精度变动的灵敏度进行理论探讨后发现:随着分布特征参数的变动,监管资本及其度量精度的变动具有规律性,其灵敏度的变动仅与形状参数和频数参数有关,示例分析进一步验证了理论命题的有效性. 根据该理论命题,不仅可判别操作风险的监控参数,简化操作风险监控系统,而且可为监管资本提取方式的改进提供有价值的参考建议. 本文的研究在理论上进一步完善了损失分布法在操作风险度量与管理中的应用.

Abstract

Suppose that the operational loss severity distribution is the Weibull, this paper derives the standard deviation and confidence intervals of heavy-tailed operational risk's regulatory capital at high confidence levels in accordance with the synthesis mechanism of operational VaR's uncertainty. After the sensitivity of regulatory capital and measurement accuracy is in theory researched by the elasticity analysis method, a rule is discovered that the regulatory capital and its measurement accuracy vary with the characteristic parameter. And their sensitivity's variation has only something to do with shape parameter and frequency parameter. The theorems are verified by the numerical example. Accordingly, the theorems not only distinguish the monitoring parameters and simplify the monitoring system, but also the valuable suggestions are given for the allocation means of regulatory capital. This research improves the application of the loss distribution approach to the operational risk measurement and management.

关键词

操作风险 / 监管资本 / 不确定性传递理论 / 弹性理论

Key words

operational risk / regulatory capital / uncertainty propagation theory / elasticity theory

引用本文

导出引用
张明善 , 唐小我 , 莫建明. Weibull分布下操作风险监管资本及度量精度灵敏度. 系统工程理论与实践, 2014, 34(8): 1932-1943 https://doi.org/10.12011/1000-6788(2014)8-1932
ZHANG Ming-shan , TANG Xiao-wo , MO Jian-ming. Sensitivity of operational risk’s regulatory capital and measurement accuracy in the Weibull distribution. Systems Engineering - Theory & Practice, 2014, 34(8): 1932-1943 https://doi.org/10.12011/1000-6788(2014)8-1932
中图分类号: F830   

参考文献

[1] Basel Committee on Banking Supervision. International convergence of capital measurement and capital standards: A revised framework[S]. Bank for International Settlements, 2004.
[2] Federal Reserve System, Office of the Comptroller of the Currency, Office of Thrift Supervision and Federal Deposit Insurance Corporation. Results of the 2004 loss data collection exercise for operational risk[R]. 2005.
[3] Bühlmann H. Mathematical methods in risk theory[M]. Germany: Springer-Verlag Heidelberg, 1970.
[4] Moscadelli M. The modelling of operational risk: Experience with the analysis of the data collected by the Basel Committee[R]. Italy, Banca D'Italia, Termini di discussione Number 517, 2004.
[5] Chavez-Demoulin V, Embrechts P, Neslehova J. Quantitative models for operational risk: Extremes, dependence and aggregation[J]. Journal of Banking and Finance, 2006, 30(10): 2635-2658.
[6] Chapelle A, Crama Y, Hübner G, et al. Practical methods for measuring and managing operational risk in the financial sector: A clinical study[J]. Journal of Banking & Finance, 2008, 32(6): 1049-1061.
[7] Dionne G, Dahen H. What about underevaluating operational value at risk in the banking sector?[C] //The 6th Annual Premier Global Event on ERM, 2008.
[8] Baud N, Frachot A, Roncalli T. How to avoid over-estimating capital charge for operational risk?[R]. Operational Risk-Risk' Newsletter, 2003.
[9] Frachot A, Moudoulaud O, Roncalli T. Loss distribution approach in practice, in michealong, the Basel handbook: A guide for financial practitioners[M]. Risk Books, 2007: 503-565.
[10] Shih J, Ah S K, Medapa P. Is the size of an operational loss related to firm size?[J]. Operational Risk, 2000, 2(1): 21-22.
[11] Na H S. Analysing and scaling operational risk[D]. Erasmus University Rotterdam, Netherlands, 2004.
[12] Na H S, Van Den Berg J, Miranda L C, et al. An econometric model to scale operational losses[J]. Operational Risk, 2006, 1(2): 11-31.
[13] King J L. Operational risk: Measurement and modelling[M]. New York: John Wiley & Sons, Ltd, 2001.
[14] 莫建明, 周宗放. LDA下操作风险价值的置信区间估计及敏感性[J]. 系统工程, 2007, 25(10): 33-39.Mo Jianming, Zhou Zongfang. Confidence interval and sensitivity of the operational VaR in LDA[J]. Systems Engineering, 2007, 25(10): 33-39.
[15] 莫建明, 周宗放. 重尾性操作风险的风险价值置信区间的灵敏度[J]. 系统工程理论与实践, 2009, 29(6): 59-67.Mo Jianming, Zhou Zongfang. Confidence intervals's sensitivity of the heavy-tailed operational VaR[J]. Systems Engineering——Theory & Practice, 2009, 29(6): 59-67.
[16] Embrechts P, Klüppelberg C, Mikosch T. Modelling extremal events for insurance and finance[M]. Berlin: Springer, 1997: 705-729.
[17] 史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006.Shi Daoji. Applied method of extremes statistics[M]. Tianjin: Tianjin Science and Technology Press, 2006.
[18] Bocker K, KlÄuppelberg C. Operational VaR: A closed-form approximation[J]. Risk of London, 2005, 18(12): 90-93.
[19] Bocker K, Sprittulla J. Operational VAR: Meaningful means[J]. Risk of London, 2006, 19(12): 96-98.
[20] Bocker K. Operational risk analytical results when high-severity losses follow a generalized Pareto distribution (GPD)[J]. Risk of London, 2006, 8(4): 117-120.
[21] JJF1059-1999. 测量不确定度评定与表示[S]. 北京: 中国计量出版社, 1999.JJF1059-1999. Evaluation and expression of uncertainty in measurement[S]. Beijing: China Metrology Publishing House, 1999.

基金

国家社会科学基金(11XGL009);教育部人文社会科学基金(10YJA630207);西南民族大学研究生学位点建设项目(2013XWD-B0304,2013XWD-S1201);中国博士后基金第49批
PDF(508 KB)

369

Accesses

0

Citation

Detail

段落导航
相关文章

/