
延迟D-策略Geo/G/1排队系统的队长分布及容量的优化设计
Queue size distribution and capacity optimum design for Geo/G/1 queueing system with delayed D-policy
考虑延迟D-策略离散时间Geo/G/1排队系统, 使用全概率分解技术, 从任意初始状态出发, 研究了队长的瞬态和稳态性质, 推导出了在任意时刻n+ 瞬态队长分布的z-变换的递推表达式和稳态队长分布的递推表达式, 并获得稳态队长的随机分解结果, 同时得到了系统在三种任意时刻(n-, n, n+)处稳态队长分布的重要关系. 最后, 通过数值实例, 讨论了稳态队长分布对系统参数的敏感性, 并阐述了获得便于计算的稳态队长分布的表达式在系统容量优化设计中的重要应用价值.
This paper considers the discrete-time Geo/G/1 queueing system with delayed D-policy. By using the total probability decomposition technique, we study the transient and equilibrium properties of the queue length from the beginning of the any initial state, obtain both the recursion expressions of the z-transformation of the transient queue length distribution at any time n+ and the recursion expressions of the steady state queue length distribution, and then we give the stochastic decomposition of the queue length in equilibrium. The important relations between the steady state queue length distributions at different epochs (n-, n, n+) are discovered. Finally, by numerical examples we discuss the sensitivity of the steady state queue length distribution towards system parameters and illustrate the important value of the expressions of the steady state queue length distribution for calculating conveniently in the system capacity design.
离散时间Geo/G/1排队 / 延迟D-策略 / 全概率分解技术 / 队长分布 / 随机分解 / 系统容量的优化设计 {{custom_keyword}} /
discrete-time Geo/G/1 queue / delayed D-policy / total probability decomposition technique / queue length distribution / stochastic decomposition / system capacity optimum design {{custom_keyword}} /
[1] Hunter J J. Mathematical techniques of applied probability, Vol. II, discrete time models: Techniques and applications[M]. New York: Academic Press, 1983.
[2] 田乃硕, 徐秀丽, 马占友. 离散时间排队论[M]. 北京: 科学出版社, 2008. Tian N S, Xu X L, Ma Z Y. Discrete-time queueing theory[M]. Beijing: Science Press, 2008.
[3] Atencia I, Moreno P. Discrete-time Geo^{[X]}/G_H/1 retrial queue with Bernoulli feedback[J]. Computers and Mathematics with Applications, 2004, 47: 1273-1294.
[4] Tian N S, Ma Z Y, Liu M X. The discrete time Geom/Geom/1 queue with multiple working vacations[J]. Applied Mathematical Modelling, 2008, 32(12): 2941-2953.
[5] Li J H, Tian N S, Liu W Y. Discrete-time GI/Geo/1 queue with multiple working vacations[J]. Queueing Systems, 2007, 56: 53-63.
[6] Tang Y H, Yun X, Huang S J. Discrete-time Geo^X/G/1 queue with unreliable server and multiple adaptive delayed vacation[J]. Journal of Computational and Applied Mathematics, 2008, 220: 439-455.
[7] Yu M M, Tang Y H, Fu Y H, et al. GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2170-2184.
[8] Tang Y H, Yu M M, Li C L. Geom/G1,G2/1/1 repairable Erlang loss system with catastrophe and second optional service[J]. Journal of Systems Science and Complexity, 2011, 24(3): 554-564.
[9] Luo C Y, Xiang K L, Yu M M, et al. Recursive solution of queue length distribution for Geo/G/1 queue with single server vacation and variable input rate[J]. Computers and Mathematics with Applications, 2011, 61(9): 2401-2411.
[10] 魏瑛源, 唐应辉, 顾建雄. 延迟N-策略Geo/G/1 排队系统的队长分布及数值计算[J]. 系统工程理论与实践, 2011, 31(11): 2151-2160. Wei Y Y, Tang Y H, Gu J X. Queue length distribution and numerical calculation for Geo/G/1 queueing system with delayed N-policy[J]. Systems Engineering —— Theory & Practice, 2011, 31(11): 2151-2160.
[11] Balachandran K R. Control policies for a single server system[J]. Management Science, 1973, 19(9): 1013-1018.
[12] Lee H W, Seo W J. The Performance of the M/G/1 queue under the dyadic Min(N, D)—— Policy and its cost optimization[J]. Performance Evaluation, 2008, 65(10): 742-758.
[13] Artalejo J R. A note on the optimality of the N-and D-policies for the M/G/1 queue[J]. Operation Research Letters, 2002, 30(6): 375-376.
[14] Li J, Niu S C. The waiting-time distribution for the GI/G/1 queue under the D-policy[J]. Probability in the Engineering and Information Sciences, 1992, 6(3): 287-308.
[15] Dshalalow J H. Queueing processes in bulk systems under D-policy[J]. Journal of Applied Probability, 1998, 35(4): 976-989.
[16] Artalejo J R. On the M/G/1 queue with D-policy[J]. Applied Mathematical Modelling, 2001, 25(12): 1055-1069.
[17] Agarwal R P, Dshalalow J H. New fluctuation analysis of D-policy bulk queues with multiple vacations[J]. Mathematical and Computer Modelling, 2005, 41(2-3): 253-269.
[18] Wang K H, Kuo C C, Ke J C. Optimal control of the D-policy M/G/1 queueing system with server breakdowns[J]. American Journal of Applied Sciences, 2008, 5(5): 565-573.
[19] Lee H W, Kim S A, Lee S W. Analysis and cost optimization of the M/G/1 queue under the D-policy and LCFS discipline[J]. Stochastic Analysis and Applications, 2008, 1(26): 39-59.
[20] Tang Y H. The transient solution for M/G/1 queue with server vacations[J]. Acta Mathematica Scientia, 1997, 17(3): 276-283.
国家自然科学基金(71171138)
/
〈 |
|
〉 |