
基于极值理论的飞控系统故障后风险定量评估
Quantitative assessment of flight risk based on extreme value theory
研究了基于极值理论(EVT)的低频高危事件定量评估方法. 构建了考虑驾驶员响应的飞控系统故障后评估模型, 介绍了角速率传感器故障后极值样本的获取方法. 利用非线性优化模型对极值理论中常用的线性模型进行了改进, 针对极值样本分布模型中参数的辨识, 对比了几种优化算法对文中评估模型的适用性. 采用四种优化算法对模型参数进行了对比辨识以寻求飞行风险条件概率最优解,得出了自适应粒子群算法对文中评估模型适应度最高的结论. 最后将传感器故障风险概率加入有驾驶员响应环节的马尔科夫过程模型对飞控系统风险概率进行动态定量评估. 其最终结果可为定量评估某型机操纵系统的动态可靠性提供理论依据.
Flight risk has the characters of small probability and great hazard. In order to assess it quantitatively, extreme value theory (EVT) was adopted to analyze the distribution of decisive parameters. Firstly the fault model that takes pilot response into consideration was built, then a method of acquiring the extreme sample when the angular rate sensor breaks down was introduced. After that, the distribution of the decisive parameters was obtained using the simulation system; then non-linear model was used to replace the inaccurate linear model that is widely used in the process of identifying the extreme value distribution. In order to solve the uncertainty in the fitting process, four optimization algorithms were taken to identify the model parameters contrastively and the adaptive range particle swarm optimization (ARPSO) was found to be the best suitable algorithm. The acquired risk probability was then taken into Markov model that involves pilot mode to evaluate the compositive flight risk of control system quantitatively. The results can evaluate the dynamic reliability in some certain airplanes' control system.
飞行风险概率 / 极值理论 / 人-机系统 / 角速率传感器 / 自适应区间粒子群 {{custom_keyword}} /
flight risk probability / extreme value theory (EVT) / pilot-aircraft system / angular rate sensor / adaptive range particle swarm optimization (ARPSO) {{custom_keyword}} /
[1] 刘汉辉, 焦延津. 安全飞行原理[M]. 北京:中国民航出版社, 1993.
[2] 宋翔贵, 张新国. 电传飞行控制系统[M]. 北京: 国防工业出版社, 2003.
[3] GJB2878-97. 有人驾驶飞机电传飞行控制系统通用规范[S]. 1997.
[4] SAE ARP4761. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment[S]. 1996.
[5] Jones S M, Reveley M. An overview of the NASA aviation safety program assessment progress[R]. AIAA-2003-6706, 2003.
[6] Tuegel E, Penmetsa R. Risk-based design and certification of aircraft: a systems engineering approach[R]. AIAA-06-2147, 2006.
[7] Burdun I Y, Delaurentis D A, Mavris D N. Modeling and simulation of airworthiness requirements for an HSCT prototype in early design[R]. AIAA-1998-4936, 1998.
[8] 刘晓东, 何元清, Dcboeach Fels. 基于FDR的飞行安全定量评价模型FRAM-FD[J]. 电子科技大学学报, 2006, 35(1): 96-99.Liu X D, He Y Q, Fels D. A quantified flight risk assessment model based on FDR[J]. Journal of UEST of China, 2006, 35(1): 96-99.
[9] 徐浩军, 朱建太, 曾凡. 飞机纵向摆动及飞行安全评估[J]. 航空学报, 2003, 24(3): 254-257.Xu H J, Zhu J T, Zeng F. Longitudinal oscillation and flying security evaluation[J]. Acta Aeronautica Et Astronautica Sinica, 2003, 24(3): 254-257.
[10] Hüsler J, Cruz P, Hau A, et al. On optimization and extreme value theory[J]. Methodology and Computing in Applied Probability, 2003, 5: 183-195.
[11] Bekinos S D, Georgoutsos D A. Estimation of value-at-risk by extreme value and conventional methods: A comparative evaluation of their predictive performance[J]. Journal of International Financial Markets, Institutions & Money, 2005, 15(3): 209-228.
[12] Meshkat L. Probabilistic risk assessment for concurrent conceptual design of space missions[R]. AIAA-2005-6765. 2005.
[13] 葛培华. 飞机飞行安全[Z]. 北京: 中国人民解放军空军飞行安全局, 2004.Ge P H. Aircraft Flight Safety[Z]. Beijing: PLA Airforce Flight Safety Office, 2004.
[14] Weber D P. Fuzzy Weibull for risk analysis[C]// Proceedings of Annual Reliability and Maintainability Symposium, 1994: 456-461.
[15] 肖业伦. 飞行器运动方程[M]. 北京: 航空工业出版社, 1987.Xiao Y L. Aircraft Motion Equation[M]. Beijing: Aviation Industry Press, 1987.
[16] 胡兆丰. 人机系统和飞行品质[M]. 北京: 北京航空航天大学出版社, 1994.Hu Z F. Pilot-aircraft System and Flying Quality[M]. Beijing: Beihang University Press, 1994.
[17] Kazak V, Tachinina E. Effect assessment of human element for operator's activities under extreme conditions[C]// TCSET, Lviv-Slavsko, Ukraine, 2004: 378-379.
[18] Luxhø j J T, Jalil M, Jones S M. A risk-based decision support tool for evaluation aviation[R]. AIAA's 3rd Annual Aviation Technology, Integration, and Operations Tech, AIAA-2003-6740, 2003.
[19] Lin P C, Ko P C. Portfolio value-at-risk forecasting with GA-based extreme value theory[J]. Expert Systems with Applications, 2009, 36: 2503-2512.
[20] Kennedy J, Eberhart R C. Particle swarm optimization[C]// IEEE Int Conf On Neural Networks, Perth, WA, Australia, 1995: 1942-1948.
[21] Kitayama S, Yamazaki K, Arakawa M. Adaptive range particle swarm optimization[C]// 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2006.
国家自然科学基金(60572172, 61074007)
/
〈 |
|
〉 |