重大事件下中国股市的跳跃特征

郭文旌, 邓明光, 董琦

系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (2) : 308-316.

PDF(2447 KB)
PDF(2447 KB)
系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (2) : 308-316. DOI: 10.12011/1000-6788(2013)2-308
论文

重大事件下中国股市的跳跃特征

    郭文旌1,2, 邓明光1, 董琦1
作者信息 +

Chinese stock market's jumping characteristics under the major events

    GUO Wen-jing1,2, DENG Ming-guang1, DONG Qi1
Author information +
文章历史 +

摘要

重大事件发生时, 中国股市是否会发生跳跃?跳跃的特性是怎样的呢?该文应用动态Jump-Garch模型, 分别对不同类型(分为政策性事件、经济事件及自然灾害类事件)的重大事件发生时, 股票市场指数跳跃大小的条件均值、条件方差以及跳跃强度、幅度的变化情况进行了综合分析. 结果发现政策性事件的跳跃强度与幅度最大, 但滞后性、 持续性很弱; 自然灾害类事件跳跃强度与幅度最小, 但持续性和滞后性最大; 经济事件则位于二者之间.

Abstract

Do jumps happen in the Chinese stock market when major events occur? What are the feature of these jumps? In this article, we adopted dynamic Jump-Garch model and analysize conditional mean, conditional variance, intensity and amplitude changes of jump. The result shows that jump intensity and amplitude of political events is greatest, together with weak hysteresis quality and endurance; natural disaster perform contrarily; economic events are placed in the middle.

关键词

重大事件 / 动态Jump-Garch / 跳跃次数 / 跳跃强度 / 跳跃幅度

Key words

major events / dynamic Jump-Garch / jump frequency / jump intensity / jump amplitude

引用本文

导出引用
郭文旌 , 邓明光 , 董琦. 重大事件下中国股市的跳跃特征. 系统工程理论与实践, 2013, 33(2): 308-316 https://doi.org/10.12011/1000-6788(2013)2-308
GUO Wen-jing , DENG Ming-guang , DONG Qi. Chinese stock market's jumping characteristics under the major events. Systems Engineering - Theory & Practice, 2013, 33(2): 308-316 https://doi.org/10.12011/1000-6788(2013)2-308
中图分类号: F830.91   

参考文献

[1] Glosten L, Milgrom P. Bid, ask, and transaction prices in a specialist market with heterogeneously informed traders[J]. Journal of Financial Economics, 1985, 14: 71-100.

[2] Akriray V, Booth G G. Mixed jump-diffusion process modeling of exchange rate movement[J]. The Review of Economics and Statistics, 1988, 70: 631-637.

[3] Tucker A L, Pond L. The probability distribution of foreign exchanges: Tests of candidate processes[J]. Review of Economics and Statistics, 1988, 70: 638-647.

[4] 谢赤, 邓艺颖. 基于扩散模型的银行间债券市场回购利率动态的实证分析[J]. 系统工程, 2003, 21(4): 104-110.Xie C, Deng Y Y. An empirical analysis on the dynamics of repurchase rate in China inter-bank bond market by using diffusion models[J]. Systems Engineering, 2003, 21(4): 104-110.

[5] Jorion P. On jump processes in the foreign exchange and stock markets[J]. The Review of Financial Studies, 1988, 1: 427-445.

[6] 童汉飞, 刘宏伟. 中国股市收益率与波动率跳跃性特征的实证分析[J]. 南方经济, 2006(5): 61-72.Tong H F, Liu H W. Empirical investigation on rate of return and volatility with jump-GARCH model in Chinese stock market[J]. South China Journal of Economics, 2006(5): 61-72.

[7] 张金清, 周茂彬. 中国短期利率跳跃行为的实证研究[J]. 统计研究, 2008(1): 59-64.Zhang J Q, Zhou M B. Empirical research on the jump behavior of Chinese short rate[J]. Statistical Research, 2008(1): 59-64.

[8] Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5: 177-188.

[9] Bates D S. The crash of 87: Was it expected? The evidence from the option markets[J]. The Journal of Finance, 1991, 46: 1009-1044.

[10] Chan W H, Maheu J M. Conditional jump dynamics in stock market return[J]. Journal of Business & Economic Statistics, 2002, 20: 377-389.

基金

国家自然科学基金(71071071, 11101205); 教育部人文社会科学研究规划项目(09YJA790100, 12YJAZH020); 江苏省高校哲学社会科学项目(09SJB790013); 南京财经大学研究生课程建设项目(Y1204)

PDF(2447 KB)

457

Accesses

0

Citation

Detail

段落导航
相关文章

/