基于蒙特卡罗模拟的直觉正态云多准则群决策方法

王坚强, 杨恶恶

系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (11) : 2859-2865.

PDF(698 KB)
PDF(698 KB)
系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (11) : 2859-2865. DOI: 10.12011/1000-6788(2013)11-2859
论文

基于蒙特卡罗模拟的直觉正态云多准则群决策方法

    王坚强1, 杨恶恶1,2
作者信息 +

Multiple criteria group decision making method based on intuitionistic normal cloud by Monte Carlo simulation

    WANG Jian-qiang1, YANG Wu-e1,2
Author information +
文章历史 +

摘要

定义了直觉正态云模型,提出了基于直觉正态云的多准则群决策方法.该方法将不同决策者给出的不确定决策信息看作是直 觉正态云中部分云滴的集合,以此对云的参数加以估计.同时,为了比较决策者对不同方案的偏好,设计了直觉正态云发生算法,并 利用该算法通过蒙特卡罗模拟生成各方案综合表现云的云滴样本并进行统计,按统计结果来对各方案综合评价云进行排序.最后实 例说明了该方法的可行性和有效性.

Abstract

Intuitionistic normal cloud model is defined. And a multi-criteria group decision making method based on intuitionistic normal cloud is proposed. The uncertain decision information elicited from different decision makers are considered as some collections of the cloud drops of an intuitionistic normal cloud. Then, the parameters of this cloud can be estimated. For comparing the decision makers' preference on the alternatives, an algorithm for generating intuitionistic normal clouds drops is designed. And a Monte Carlo simulation based on this algorithm is adopted as well. The samples for this simulation are the drops of the intuitionistic normal clouds corresponding to the conjoint performances of the alternatives. The decision makers can order the alternatives and choose the feasible option according to the statistical results from the simulation. A practical example is also provided to illustrate the feasibility and validity of the proposed method.

关键词

多准则 / 群决策 / 直觉正态 / 云模型 / 蒙特卡罗模拟

Key words

multiple criteria / group decision / intuitionistic normal / cloud model / Monte Carlo simulation

引用本文

导出引用
王坚强 , 杨恶恶. 基于蒙特卡罗模拟的直觉正态云多准则群决策方法. 系统工程理论与实践, 2013, 33(11): 2859-2865 https://doi.org/10.12011/1000-6788(2013)11-2859
WANG Jian-qiang , YANG Wu-e. Multiple criteria group decision making method based on intuitionistic normal cloud by Monte Carlo simulation. Systems Engineering - Theory & Practice, 2013, 33(11): 2859-2865 https://doi.org/10.12011/1000-6788(2013)11-2859
中图分类号: C934   

参考文献

[1] Gilboa I. Questions in decision theory[J]. Annual Review of Economics, 2010, 2: 1-19.
[2] Liu B. Uncertainty theory[M]. Berlin Heidelberg: Springer, 2010.
[3] Wong B K, Lai V S. A survey of the application of fuzzy set theory in production and operations management: 1998-2009[J]. International Journal of Production Economics, 2011, 129(1): 157-168.
[4] Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[5] Gau W L, Buehrer D J. Vague sets[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(2): 610-614.
[6] Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 79(3): 403-405.
[7] Xu Z, Cai X. Recent advances in intuitionistic fuzzy information aggregation[J]. Fuzzy Optimization and Decision Making, 2010, 9: 359-381.
[8] Ye J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment[J]. European Journal of Operational Research, 2010, 205(1): 202-204.
[9] Vlachos I K, Sergiadis G D. Intuitionistic fuzzy information — Applications to pattern recognition[J]. Pattern Recognition Letters, 2007, 28(2): 197-206.
[10] 张全, 樊治平, 潘德惠. 不确定性多属性决策中区间数的一种排序方法[J]. 系统工程理论与实践, 1999, 19(5): 129-133.Zhang Q, Fan Z P, Pan D H. A ranking approach for interval numbers in uncertain multiple attribute decision making problems[J]. Systems Engineering — Theory & Practice, 1999, 19(5): 129-133.
[11] 刘琳, 陈云翔, 葛志浩. 基于正态分布区间数的概率测度及多属性决策[J]. 系统工程与电子技术, 2008, 30(4): 652-654.Liu L, Chen Y X, Ge Z H. Probability measure of interval-number based on normal distribution and multi-attribute decision making[J]. Systems Engineering and Electronics, 2008, 30(4): 652-654.
[12] 汪新凡, 肖满生. 基于正态分布区间数的信息不完全的群决策方法[J]. 控制与决策, 2010, 25(10): 1494-1498.Wang X F, Xiao M S. Approach of group decision making based normal distribution interval number with incomplete information[J]. Control and Decision, 2010, 25(10): 1494-1498.
[13] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34.Li D Y, Liu C Y. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8): 28-34.
[14] 王坚强, 李康健. 基于直觉正态模糊集结算子的多准则决策方法[J]. 系统工程理论与实践, 2013, 33(6): 1501-1508.Wang J Q, Li K J. Multi-criteria decision-making method based on intuitionistic normal fuzzy aggregation operators[J]. Systems Engineering — Theory & Practice, 2013, 33(6): 1501-1508.
[15] Shu M H, Cheng C H, Chang J R. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46(12): 2139-2148.
[16] 王坚强. 模糊多准则决策方法研究综述[J]. 控制与决策, 2008, 23(6): 601-606.Wang J Q. Overview on fuzzy multi-criteria decision-making approach[J]. Control and Decision, 2008, 23(6): 601-606.
[17] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究和发展, 1995, 32(6): 16-21.Li D Y, Meng H J, Shi X M. Membership clouds and membership cloud generators[J]. Computers Research and Development, 1995, 32(6): 16-21.
[18] 刘常昱, 李德毅, 杜#
[103], 等. 正态云模型的统计分析[J]. 信息与控制, 2005, 34(2): 236-239.Liu C Y, Li D Y, Du Y, et al. Some statistical analysis of the normal cloud model[J]. Information and Control, 2005, 34(2): 236-239.
[19] 于少伟, 史忠科. 基于正态分布区间数的逆向云新算法[J]. 系统工程理论与实践, 2011, 31(10): 2021-2026.Yu S W, Shi Z K. New algorithm of backward cloud based on normal interval number[J]. Systems Engineering — Theory & Practice, 2011, 31(10): 2021-2026.
[20] 刘常昱, 冯芒, 戴晓军,等. 基于云X信息的逆向云新算法[J]. 系统仿真学报, 2004, 16(11): 2417-2420.Liu C Y, Feng M, Dai X J, et al. A new algorithm of backward cloud[J]. Journal of System Simulation, 2004, 16(11): 2417-2420.
[21] 张飞舟, 范跃祖, 沈程智,等. 基于隶属云发生器的智能控制[J]. 航空学报, 1999, 20(1): 89-92.Zhang F Z, Fan Y Z, Shen C Z, et al. Intelligent control based on membership cloud generators[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(1): 89-92.
[22] Wang S L, Li D R, Shi W Z, et al. Cloud model-based spatial data mining[J]. Geographic Information Sciences, 2003, 9(1-2): 60-70.
[23] 吕辉军, 王晔, 李德毅, 等. 逆向云在定性评价中的应用[J]. 计算机学报, 2003, 26(8): 1009-1014.Lü H J, Wang Y, Li D Y, et al. The application of backward cloud in qualitative evaluation[J]. Chinese Journal of Computers, 2003, 26(8): 1009-1014.
[24] Binder K. Monte-Carlo methods[M]//Mathematical Tools for Physicists. Wiley-VCH Verlag GmbH and Co KGaA, 2006: 249-280.
[25] Bustince H, Burillo P. Structures on intuitionistic fuzzy relations[J]. Fuzzy Sets and Systems, 1996, 78(3): 293-303.

基金

国家自然科学基金(71271218,71371196);国家创新研究群体科学基金(71221061);教育部人文社会科学基金(13YJC630200)
PDF(698 KB)

450

Accesses

0

Citation

Detail

段落导航
相关文章

/