加权已实现极差四次幂变差分析及其应用

唐勇, 刘微

系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (11) : 2766-2775.

PDF(963 KB)
PDF(963 KB)
系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (11) : 2766-2775. DOI: 10.12011/1000-6788(2013)11-2766
论文

加权已实现极差四次幂变差分析及其应用

    唐勇, 刘微
作者信息 +

Analysis of weighted realized range-based quadpower variation and its application

    TANG Yong, LIU Wei
Author information +
文章历史 +

摘要

针对金融高频数而开发的极差波动估计量因能更精确地度量波动率而备受关注. 根据方差有效性结合数值模拟, 推导出了已实现极差多幂次变差族中最优的波动估计量, 并依据无偏性和方差有效性给出了相应的加权估计量. 同时将这些估计量与已实现GRACH模型相结合, 并对模型进行扩展. 实证表明已实现极差四幂次变差是已实 现极差多幂次变差族中最优的波动估计量, 加权的已实现极差四幂次变差能有效消除日历效应的影响, 扩展的已实现GRACH模型在拟合和预测效果上明显优于传统的EGARCH模型.

Abstract

Range-based volatility aiming at financial high-frequency data has attracted more and more attention for its more accurate estimation of financial asset's volatility. The paper derives the optimal volatility estimator in the family of realized range-based multipower variation, according to variance efficiency with numerical simulation and it also gives its weighted estimator, according to unbiasedness and variance efficiency. Meanwhile, the paper expands the realized GARCH model under the condition that the realized GARCH model is combined with these estimators. The empirical analyses show that realized range-based quadpower variation is the optimal volatility estimator in the family of realized range-based multipower variation, the weighted realized range-based quadpower variation does get rid of the influence of calendar effect and the expanded realized GARCH models outperform traditional EGARCH model in fit and forcasting.

关键词

已实现极差多幂次变差 / 日历效应 / 已实现GARCH / 预期不足

Key words

range-based multipower variation / calendar effect / realized-GARCH model / expected shortfall

引用本文

导出引用
唐勇 , 刘微. 加权已实现极差四次幂变差分析及其应用. 系统工程理论与实践, 2013, 33(11): 2766-2775 https://doi.org/10.12011/1000-6788(2013)11-2766
TANG Yong , LIU Wei. Analysis of weighted realized range-based quadpower variation and its application. Systems Engineering - Theory & Practice, 2013, 33(11): 2766-2775 https://doi.org/10.12011/1000-6788(2013)11-2766
中图分类号: F830   

参考文献

[1] Christensen K, Podolskij M. Realized range-based estimation of integrated variance[J]. Journal of Econometrics, 2007, 141(2): 323-349.
[2] Martens M, Van Dijk D. Measuring volatility with the realized range[J]. Journal of Econometrics, 2007, 138(1): 181-207.
[3] 唐勇,张世英. 高频数据的加权已实现极差波动及其实证分析[J]. 系统工程, 2006, 24(8): 52-57. Tang Y, Zhang S Y. Weighted realized range-based volatility based on high-frequency data and its empirical analysis[J]. Systems Engineering, 2006, 24(8): 52-57.
[4] 唐勇,张世英. 已实现波动和已实现极差波动的比较研究[J]. 系统工程学报, 2007, 22(4): 437-442. Tang Y, Zhang S Y. Comparing research: Realized volatility and realized range-based volatility[J]. Journal of Systems Engineering, 2007, 22(4): 437-442.
[5] Christensen K, Podolskij M, Vetter M. Bias-correcting the realized range-based variance in the presence of market microstructure noise[J]. Finance and Stochastics, 2009, 13: 239-268.
[6] Barndorff-Nielsen O E, Shephard N. Variation, jumps, market frictions and high frequency data in financial econometrics[C]//Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, 2007, 3: 328-372.
[7] Christensen K, Podolskij M. Asymptotic theory of range-based multipower variation[J]. Journal of Financial Econometrics, 2012, 10(3): 417-456.
[8] Hansen P R, Huang Z, Shek H. Realized GARCH: A joint model of returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906.
[9] Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business, 1980, 53(1): 61-65.
[10] 李胜歌, 张世英. "已实现"双幂次变差与多幂次变差的有效性分析[J]. 系统工程学报, 2007, 22(3): 280-286. Li S G, Zhang S Y. Analysis of the efficiency of realized bipower variation and realized multipower variation[J]. Journal of Systems Engineering, 2007, 22(3): 280-286.
[11] 李胜歌, 张世英. 金融波动的赋权"已实现"双幂次变差及其应用[J]. 中国管理科学, 2007, 15(5): 9-15. Li S G, Zhang S Y. Weighted realized bipower variation of financial volatility and its application[J]. Chinese Journal of Management Science, 2007, 15(5): 9-15.
[12] Takahashi M, Omori Y, Watannabe T. Estimating stochastic volatility models using daily returns and realized volatility simultaneously[J]. Computational Statistics and Data Analysis, 2009, 53(6): 2404-2426.
[13] Christensen K, Oomen R, Podolskij M. Realized quantile-based estimation of integrated variance[J]. Journal of Econometrics, 2010, 159(1): 74-98.
[14] 唐勇, 寇贵明. 股票市场微观结构噪声、跳跃与流动性关系分析[J]. 中国管理科学, 2012, 20(2): 11-19. Tang Y, Kou G M. Analysis on the relationship among microstructure noise, jump and liquidty in stock market[J]. Chinese Journal of Management Science, 2012, 20(2): 11-19.
[15] Acerbi C, Tasche D. Expected shortfall: A natural coherent alternative to value at risk[J]. Economic Notes, 2002, 31(2): 379-388.
[16] Embrechts P, Kaufmann R, Patie P. Strategic long-term financial risks: Single risk factors[J]. Computational Optimization and Applications, 2005, 32(1-2): 61-90.
[17] Christensen K, Kodolskij M. Range-based estimation of quadrativc variation[J]. Journal of Econometrics, 2010, 31(4): 58-105.
[18] Watanabe T. Quantile forecasts of financial returns using realized GARCH models[J]. Japanese Economic Review, 2012, 63(1): 68-80.

基金

国家自然科学基金(71171056)
PDF(963 KB)

512

Accesses

0

Citation

Detail

段落导航
相关文章

/