基于RS-ANFIS的雷达抗干扰性能评估方法

任明秋, 蔡金燕, 朱元清, 韩壮志

系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (10) : 2701-2707.

PDF(906 KB)
PDF(906 KB)
系统工程理论与实践 ›› 2013, Vol. 33 ›› Issue (10) : 2701-2707. DOI: 10.12011/1000-6788(2013)10-2701
论文

基于RS-ANFIS的雷达抗干扰性能评估方法

    任明秋1,2, 蔡金燕2, 朱元清1, 韩壮志2
作者信息 +

Evaluation approach for radar ECCM capability based on RS-ANFIS

    REN Ming-qiu1,2, CAI Jin-yan2, ZHU Yuan-qing1, HAN Zhuang-zhi2
Author information +
文章历史 +

摘要

雷达抗干扰性能评估是雷达系统研制、引进、装备过程中必要的环节. 如何综合评估复杂电磁环境下的雷达抗干扰性能评估已成为研究的重点. 针对现有雷达抗干扰性能评估方法的特点和局限性, 提出了一种基于粗糙集-自适应神经网络模糊推理系统(RS-ANFIS)的性能评估方法. 首先, 针对原始样本数据的不完备性和不确定性, 采用粗糙集理论对原始样本数据进行数据归一化、 离散化、属性约简处理, 并得到覆盖原始样本特征的最小规则集. 其次, 建立了基于ANFIS的Sugeno型性能评估模型, 设计了评估变量的隶属度函数和推理规则, 确定了评估网络各层输入输出关系以及网络学习算法. 最后, 以12组雷达抗干扰性能评估指标为例进行算法模型验证, 表明了方法的可行性和模型的有效性. 实验结果表明, 该方法能够有效改进网络结构, 提高雷达抗干扰性能评估结果的可信度.

Abstract

The radar electronic counter-countermeasures (ECCM) capability evaluation (CE) method is the essential step in the radar development, introduction, and service process. Consequentially, the CE for radar ECCM in the complex electromagnetic environment becomes a research focus point. Considered with the present research situation, a technique for CE based on rough sets and adaptive neuro fuzzy inference system (RS-ANFIS) is proposed to solve the properties and vulnerabilities existed in the CE methods. According to the uncertainty and imperfection of the original sample data, the rough set is used to preprocess for the normalization of data, the discretization of continuous data and the attribute reduction in order to obtain the minimum feature subset. Then a model for CE based on ANFIS with Sugeno type is established. The membership functions and the inference rules of the system variables are devised with computational relations between layers of the input and output and the learning algorithm of neural network. Subsequently, 12 typical sample sets are used to check the validity and rationality of constructed model. The experiment results show that the proposed method can effectively optimize the structure of neural networks and make the radar ECCM capability evaluation more feasibly and practically.

关键词

雷达抗干扰 / 粗糙集 / 自适应模糊推理网络 / 性能评估

Key words

radar ECCM / rough set / ANFIS / capability evaluation

引用本文

导出引用
任明秋 , 蔡金燕 , 朱元清 , 韩壮志. 基于RS-ANFIS的雷达抗干扰性能评估方法. 系统工程理论与实践, 2013, 33(10): 2701-2707 https://doi.org/10.12011/1000-6788(2013)10-2701
REN Ming-qiu , CAI Jin-yan , ZHU Yuan-qing , HAN Zhuang-zhi. Evaluation approach for radar ECCM capability based on RS-ANFIS. Systems Engineering - Theory & Practice, 2013, 33(10): 2701-2707 https://doi.org/10.12011/1000-6788(2013)10-2701
中图分类号: TN958   

参考文献

[1] 王国玉,等.雷达电子战系统数学仿真与评估[M]. 北京: 国防工业出版社, 2004.
[2] 雷英杰,王宝树,王毅.基于直觉模糊推理的威胁评估方法[J].电子与信息学报, 2007, 29(9): 2077-2081.Lei Y J, Wang B S, Wang Y. Techniques for threat assessment based on intuitionistic fuzzy reasoning[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2077-2081.
[3] Pawlak Z. Rough sets and intelligent data analysis[J]. Information Sciences, 2002, 147(1): 1-12.
[4] Skolnik M I. Radar handbook[M]. 3rd ed. NY: McGraw-Hill, 2008.
[5] 宗华, 宗成阁, 于长军, 等. 多传感器信息融合NFE模型的研究及应用[J].电子与信息学报, 2010, 32(3): 522-527.Zong H, Zong C G, Yu C J, et al. Research and application on NFE model of multi-sensor information fusion[J]. Journal of Electronics & Information Technology, 2010, 32(3): 522-527.
[6] Jang J S R. ANFIS: Adaptive network-based fuzzy inference systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665-685.
[7] Bishr M, Yang Y C, Lee G K. Self-Tuning PID control using an adaptive network-based fuzzy inference system[J]. Intelligent Automation & Soft Computing, 2000, 6(4): 271-280.
[8] Panella M, Gallo A S. An input-output clustering approach to the synthesis of ANFIS networks[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 69-81.
PDF(906 KB)

373

Accesses

0

Citation

Detail

段落导航
相关文章

/