考虑单重休假M/M/1排队, 在部分可视的前提下, 研究顾客的均衡门限策略, 首次将单重休假机制引入到连续时间排队经济学模型中. 系统的决策主体是顾客, 突破了以往只注重服务机构单方面行为的局限. 基于“收入-支出”结构, 利用马尔可夫过程理论, 通过求解差分方程, 分析了系统的稳态行为, 得到了顾客的平均逗留时间; 进而构造适当的函数, 给出了寻找 均衡纯门限策略, 均衡混合门限策略的具体方法并证明之; 而后在不同的策略下, 得出了系统的稳态分布和均衡社会收益; 最后, 通过数值实验分析了均衡行为的各指标对系统参数的敏感性. 研究结果为顾客决策提供了优化建议, 同时为管理者研究系统中的定价问题提供了理论参考.
Abstract
This paper considered the equilibrium threshold strategies of customers in the M/M/1/SV queue, given that customers were informed of only the queue length. To the authors' knowledge, this is the first time that the single vacation policy is introduced into the economics of continuous-time queue. In the system, customers had the right to decide for themselves whether to join or to balk, which broke through the transition that researchers only paid attention to the servers. Based on the “reward-cost” structure and the theory of Markov process, the stationary behavior of the system was analyzed by solving the difference equation and the mean sojourn time was derived. Then by introducing appropriate functions, we provided an algorithm to identify the equilibrium pure and mixed threshold strategies. Moreover, the stationary distribution of the system under the corresponding strategy was analyzed and the social benefit was obtained. Finally, we illustrated the effects of the parameters on the equilibrium behavior via numerical experiments. The results not only provide the customers with optimal strategies but also provide the managers with a good reference to the pricing problem in the queueing system.
关键词
排队经济学 /
马尔可夫过程 /
稳态分布 /
均衡门限策略 /
社会收益
{{custom_keyword}} /
Key words
economics of queues /
Markov process /
stationary distribution /
equilibrium threshold strategy /
social benefit
{{custom_keyword}} /
中图分类号:
O226
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Naor P. The regulation of queue size by levying tolls[J]. Economica, 1969, 37: 15-24.
[2] Edelson N M, Hildebrand D K. Congestion tolls for Possion queuing processes[J]. Econometrica, 1975, 43: 81-92.
[3] Hassin R, Haviv M. Equilibrium behavior in queueing systems: To queue or not to queue[M]. Dordrecht: Kluwer, 2003.
[4] Hassin R, Haviv M. Equilibrium threshold strategies: The case of queues with priorities[J]. Operations Research, 1997, 45(6): 966-973.
[5] Sun W, Guo P F, Tian N S. Equilibrium threshold strategies in observable queueing systems with setup/closedown times[J]. Central European Journal of Operations Research, 2010, 18: 241-268.
[6] Jain A, Lim A E B, Shanthikumar J G. On the optimality of threshold control in queues with model uncertainty[J]. Queueing Systems, 2010, 65: 157-174.
[7] Burnetas A, Economou A. Equilibrium customer strategies in a single server Markovian queue with setup times[J]. Queueing Systems, 2007, 56: 213-228.
[8] Economou A, Kanta S. Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs[J]. Operations Research Letters, 2008, 36: 696-699.
[9] Guo P F, Sun W, Wang Y L. Equilibrium and optimal strategies to join a queue with partial information on service times[J]. European Journal of Operational Research, 2011, 214: 284-297.
[10] 孙微. 基于博弈论的排队经济学模型及策略分析[D]. 秦皇岛: 燕山大学, 2010: 113-119. Sun W. Game-based models and strategy analysis for economics of queues[D]. Qinhuangdao: Yanshan University, 2010: 113-119.
[11] Elaydi S N. An introduction to difference equations[M]. New York: Springer, 1999.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
教育部人文社会科学研究项目(10YJC630114, 07JA630027); 博士后研究项目(92169);湖南省研究生科研创新项目
{{custom_fund}}