Spillover effects of price limits on China stock market—Based on spatial Durbin model with time-varying weight matrices

ZHOU Yinggang, TANG Chengwei, XU Xingbai

Systems Engineering - Theory & Practice ›› 2025, Vol. 45 ›› Issue (2) : 463-480.

PDF(356 KB)
PDF(356 KB)
Systems Engineering - Theory & Practice ›› 2025, Vol. 45 ›› Issue (2) : 463-480. DOI: 10.12011/SETP2024-0766

Spillover effects of price limits on China stock market—Based on spatial Durbin model with time-varying weight matrices

  • ZHOU Yinggang1,2, TANG Chengwei3, XU Xingbai1,2,3
Author information +
History +

Abstract

Based on the daily stock data of China's A-share main board market from 2012 to 2020, this paper establishes an unbalanced panel spatial Durbin model (SDM) with time-varying spatial weight matrices to study the spillover effect of price limit hits. The empirical results suggest that the upper price limit hit (lower price limit hit) can predict the future return of the connected stocks negatively (positively), indicating a significant negative spillover effect (positive spillover effect). This study further finds that under the influence of the price limit hits, there may be a substitution effect of liquidity between connected stocks. The upper price limit hit of a stock can increase its own capital inflow, while the capital outflow of other related stocks may increase. The situation of the lower price limit hit is the opposite. In addition, due to speculative traders, the higher the limit of arbitrage of a stock is, the stronger the spillover effect caused by its price limit hit will be. Finally, the price limits have a significant volatility spillover effect on other stocks in the short-term future.

Key words

upper price limits / lower price limits / spillover effect / spatial Durbin model

Cite this article

Download Citations
ZHOU Yinggang , TANG Chengwei , XU Xingbai. Spillover effects of price limits on China stock market—Based on spatial Durbin model with time-varying weight matrices. Systems Engineering - Theory & Practice, 2025, 45(2): 463-480 https://doi.org/10.12011/SETP2024-0766

References

[1] 廖静池, 李平, 曾勇. 中国股票市场停牌制度实施效果的实证研究 [J]. 管理世界, 2009(2): 36-48. Liao J C, Li P, Zeng Y. An empirical study on the implementation effect of China's stock market suspension system[J]. Management World, 2009(2): 36-48.
[2] Deb S S, Kalev P S, Marisetty V B. Are price limits really bad for equity markets?[J]. Journal of Banking & Finance, 2010, 34(10): 2462-2471.
[3] Lehmann B N. Commentary: Volatility, price resolution, and the effectiveness of price limits[J]. Journal of Financial Services Research, 1989, 3: 205-209.
[4] Kim K A, Rhee S G. Price limit performance: Evidence from the Tokyo stock Exchange[J]. The Journal of Finance, 1997, 52(5): 885-901.
[5] Chen T, Gao Z, He J, et al. Daily price limits and destructive market behavior[J]. Journal of Econometrics, 2019, 208(1): 249-264.
[6] Chen H, Gu M, Ni B. How price limit affects the market efficiency in a short-sale constrained market? Evidence from a quasi-natural experiment[J]. Journal of Empirical Finance, 2023, 73: 22-39.
[7] Aktas O U, Kryzanowski L, Zhang J. Volatility spillover around price limits in an emerging market[J]. Finance Research Letters, 2021, 39: 101610.
[8]
陆珩瑱, 姚恒宇. 涨跌幅限制变动对市场波动性及流动性影响的仿真研究 [J]. 系统工程理论与实践, 2022, 42(4): 897-905. Lu H Z, Yao H Y. A simulation study on the effect of price limits change on market volatility and liquidity[J]. Systems Engineering—Theory & Practice, 2022, 42(4): 897-905.
[9] Seasholes M S, Wu G. Predictable behavior, profits, and attention[J]. Journal of Empirical Finance, 2007, 14(5): 590-610.
[10] LeSage J P, Pace R K. Introduction to spatial econometrics[M]. New York: Chapman and Hall/CRC, 2009.
[11] Lee L F, Yu J. A spatial dynamic panel data model with both time and individual fixed effects[J]. Econometric Theory, 2010, 26(2): 564-597.
[12] Lee L F, Yu J. QML estimation of spatial dynamic panel data models with time varying spatial weights matrices[J]. Spatial Economic Analysis, 2012, 7(1): 31-74.
[13] Giovanni J D, Hale G. Stock market spillovers via the global production network: Transmission of U.S. Monetary policy[J]. Journal of Finance, 2022, 77(6): 3373-3421.
[14] Kim K A, Liu H, Yang J J. Reconsidering price limit effectiveness[J]. Journal of Financial Research, 2013, 36(4): 493-518.
[15] Fernandes M, Rocha M A D S. Are price limits on futures markets that cool? Evidence from the Brazilian Mercantile and Futures Exchange[J]. Journal of Financial Econometrics, 2007, 5(2): 219-242.
[16] Kim K A, Park J. Why do price limits exist in Stock markets? A manipulation-based explanation[J]. European Financial Management, 2010, 16(2): 296-318.
[17] Subrahmanyam A. Circuit breakers and market volatility: A theoretical perspective[J]. The Journal of Finance, 1994, 49(1): 237-254.
[18] Hsieh P H, Kim Y H, Yang J J. The magnet effect of price limits: A logit approach[J]. Journal of Empirical Finance, 2009, 16(5): 830-837.
[19] Hou K, Li X, Zhong W. Price limits and asymmetry of price dynamics—High frequency evidence from the Chinese stock market[J]. Emerging Markets Finance and Trade, 2020, 56(7): 1447-1461.
[20] 陆昌, 刘洋, 杨晓光. 基于反事实模拟的中国股市涨跌停板磁吸效应研究 [J]. 计量经济学报, 2021, 1(1): 217-232.Lu C, Liu Y, Yang X G. Magnet effect of price limits in China's stock markets based on counterfactual simulation[J]. China Journal of Econometrics, 2021, 1(1): 217-232.
[21] Barber B M, Odean T. All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors[J]. The Review of Financial Studies, 2008, 21(2): 785-818.
[22] Bali T G, Cakici N, Whitelaw R F. Maxing out: Stocks as lotteries and the cross-section of expected returns[J]. Journal of Financial Economics, 2011, 99(2): 427-446.
[23] Han B, Kumar A. Speculative retail trading and asset prices[J]. Journal of Financial and Quantitative Analysis, 2013, 48(2): 377-404.
[24] Shleifer A, Vishny R W. The limits of arbitrage[J]. The Journal of Finance, 1997, 52(1): 35-55.
[25] Pontiff J. Costly arbitrage and the myth of idiosyncratic risk[J]. Journal of Accounting & Economics, 2006, 42(1/2): 35-52.
[26] Atilgan Y, Bali T G, Demirtas K O, et al. Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns[J]. Journal of Financial Economics, 2020, 135(3): 725-753.
[27] Hong Y, Liu Y, Wang S. Granger causality in risk and detection of extreme risk spillover between financial markets[J]. Journal of Econometrics, 2009, 150: 271-287.
[28] Diebold F X, Yilmaz K. Better to give than to receive: Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1): 57-66.
[29] Adrian T, Markus K B. CoVaR[J]. American Economic Review, 2016, 106(7): 1705-1741.
[30]
王维国, 吴传开, 付裕. 空间权重矩阵设定及SAR模型的广义工具变量估计量 [J]. 系统工程理论与实践, 2024, 44(9): 3023-3042. Wang W G, Wu C K, Fu Y. Justification of spatial weights matrices and generalized IV estimation of SAR models[J]. Systems Engineering—Theory & Practice, 2024, 44(9): 3023-3039.
[31] Elhorst J P. Spatial econometrics: From cross sectional data to spatial panels[M]. Heidelberg: Springer, 2014.
[32] Grieser W, Hadlock C, LeSage J, et al. Network effects in corporate financial policies[J]. Journal of Financial Economics, 2022, 144(1): 247-272.
[33] Mammen E. Bootstrap and wild bootstrap for high dimensional linear models[J]. The Annals of Statistics, 1993, 21(1): 255-285.
[34] Daniel K, Grinblatt M, Titman S, et al. Measuring mutual fund performance with characteristic-based benchmarks[J]. The Journal of Finance, 1997, 52(3): 1035-1058.
[35] Onnela J P, Kaski K, Kertész J. Clustering and information in correlation based financial networks[J]. The European Physical Journal B, 2004, 38(2): 353-362.
[36] Pollet J M, Wilson M. Average correlation and stock market returns[J]. Journal of Financial Economics, 2010, 96(3), 364-380.
[37] 张自力, 闫红蕾, 张楠. 股票网络、 系统性风险与股票定价 [J]. 经济学 (季刊), 2019, 19(1): 329-350. Zhang Z L, Yan H L, Zhang N. Stock network, systematic risk and stock pricing implications[J]. China Economic Quarterly, 2019, 19(1): 329-350.
[38] 徐飞, 花冯涛, 李强谊. 投资者理性预期、 流动性约束与股价崩盘传染研究 [J]. 金融研究, 2019(6): 169-187.Xu F, Hua F T, Li Q Y. Investors' rational expectations, liquidity constraints, and stock price crash contagion[J]. Journal of Financial Research, 2019(6): 169-187.
[39] Tse C K, Liu J, Lau F C. A network perspective of the stock market[J]. Journal of Empirical Finance, 2010, 17(4): 659-667.
[40]
蒋丹凌, 彭珣, 朱宏泉. A股关联公司的股票动量溢出效应研究——基于分析师共同覆盖的视角 [J]. 系统工程理论与实践, 2023, 43(7): 1891-1909. Jiang D L, Peng X, Zhu H Q. Shared analyst coverage and connected-firm momentum spillover in China[J]. Systems Engineering—Theory & Practice, 2023, 43(7): 1891-1909.
[41] Lee C M C, Ready M J. Inferring trading direction from intraday data[J]. The Journal of Finance, 1991, 46(2): 733-746.
[42] Boehmer E, Kelley E K. Institutional investors and the informational efficiency of prices[J]. The Review of Financial Studies, 2009, 22(9): 3563-3594.
[43] 高昊宇, 刘伟, 马超群, 等. 机构卖出和暴跌风险: 优势信息的作用 [J]. 管理科学学报, 2022, 25(1): 64-80.Gao H Y, Liu W, Ma C Q, et al. Institutional exits and stock crash: The role of informed investors[J]. Journal of Management Sciences in China, 2022, 25(1): 64-80.
[44] Gu M, Kang W, Xu B. Limits of arbitrage and idiosyncratic volatility: Evidence from China stock market[J]. Journal of Banking & Finance, 2018, 86: 240-258.
[45] 何诚颖, 陈锐, 薛冰, 等. 投资者情绪、 有限套利与股价异象 [J]. 经济研究, 2021, 56(1): 58-73.He C Y, Chen R, Xue B, et al. Investor sentiment, limited arbitrage and stock price anomalies[J]. Economic Research Journal, 2021, 56(1): 58-73.
[46] Grieser W, LeSage J, Zekhnini M. Industry networks and the geography of firm behavior[J]. Management Science, 2022, 68(8): 6163-6183.
[47] Fama E F, French K R. Common risk factors in the returns on stocks and bonds[J]. Journal of Financial Economics, 1993, 33(1): 3-56.
[48] Fama E F, French K R. A five-factor asset pricing model[J]. Journal of Financial Economics, 2015, 116(1): 1-22.
[49] Carhart M M. On persistence in mutual fund performance[J]. The Journal of Finance, 1997, 52(1): 57-82.
[50] Liu J, Stambaugh R F, Yuan Y. Size and value in China[J]. Journal of Financial Economics, 2019, 134(1): 48-69.

Funding

National Natural Science Foundation of China (71988101, 72073110, 72333001);Major Program of National Social Science Foundation of China (19ZDA060)
PDF(356 KB)

277

Accesses

0

Citation

Detail

Sections
Recommended

/