Decomposition of carbon emission factors and carbon reduction potential of urban residents in China

YUE Ting, ZHOU Jing, LONG Ruyin, ZHANG Yingkai, WANG Qianru, CHEN Hong

Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (12) : 3777-3792.

PDF(770 KB)
PDF(770 KB)
Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (12) : 3777-3792. DOI: 10.12011/SETP2024-0015

Decomposition of carbon emission factors and carbon reduction potential of urban residents in China

  • YUE Ting1, ZHOU Jing1, LONG Ruyin2, ZHANG Yingkai1, WANG Qianru1, CHEN Hong2
Author information +
History +

Abstract

Promoting carbon emission reduction of urban residents is of great significance for mitigating climate problems. Based on the panel data of 288 cities above prefecture level in China from 2009 to 2019, this paper calculated the living carbon emissions of urban residents, and combined population and economic characteristics to cluster cities into four types for analysis, and analyzed the influencing factors of living carbon emissions of urban residents. And BP neural network and scenario analysis were used to predict the carbon reduction potential of various urban residents. The results show that: 1) The total carbon emission of urban residents in China is increasing year by year, and the proportion of carbon emission from electricity is the highest, and the growth rate of carbon emission from heating is the highest. 2) Urbanization level, per capita disposable income, energy structure and total population size all have positive effects on the carbon emissions of urban residents, while energy intensity and consumption tendency of urban residents have negative effects, and the influencing factors of carbon emissions of various cities have certain differences. 3) All kinds of cities have great carbon reduction potential in residents' life, and there are great differences. The carbon reduction potential of the second type of cities is significantly higher than that of other cities. The first type of cities has the lowest carbon reduction potential overall. The change degree of carbon reduction potential of the third and fourth types of cities is similar, showing a trend of first increasing and then decreasing. All localities may formulate and implement carbon reduction measures for residents according to local conditions.

Key words

urban residential carbon emissions / cluster analysis / influencing factors / carbon reduction potential

Cite this article

Download Citations
YUE Ting , ZHOU Jing , LONG Ruyin , ZHANG Yingkai , WANG Qianru , CHEN Hong. Decomposition of carbon emission factors and carbon reduction potential of urban residents in China. Systems Engineering - Theory & Practice, 2024, 44(12): 3777-3792 https://doi.org/10.12011/SETP2024-0015

References

[1] Francey R J, Trudinger C M, Van der Schoot M, et al. Erratum: Atmospheric verification of anthropogenic CO2 emission trends[J]. Nature Climate Change, 2013, 3(8): 764.
[2] 柴建, 杜孟凡, 周晓阳, 等. 中国省际差异化能源转型背景下的CO2 排放预测[J]. 系统工程理论与实践, 2019, 39(8): 2005-2018. Chai J, Du M F, Zhou X Y, et al. The prediction of CO2 emission in the background of China’s provincial differentiated energy transformation[J]. Systems Engineering — Theory & Practice, 2019, 39(8): 2005-2018.
[3] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2023. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2023.
[4] 岳婷, 龙如银. 城市居民自愿减碳行为与助推策略[M]. 北京: 中国社会科学出版社, 2023. Yue T, Long R Y, Urban residents’ voluntary carbon reduction behavior and nudging strategy[M]. Beijing: China Social Sciences Press, 2023.
[5] 周桂芳, 周彦兵, 胡涛. 中原城市群县域碳排放时空演变及影响因素分析[J]. 管理学刊, 2023, 36(3): 19-34. Zhou G f, Zhou Y B, Hu T. Analysis on temporal and spatial pattern evolution and influencing factors of county carbon emission in Zhongyuan urban agglomeration[J]. Journal of Management, 2023, 36(3): 19-34.
[6] 华怡婷, 石宝峰. 互联网使用与家庭间接碳排放: 测度及影响因素分析[J]. 重庆大学学报(社会科学版), 2023, 29(1): 117-134. Hua Y T, Shi B F. Internet usage and household indirect carbon emissions: Measurement and impact factor analysis[J]. Journal of Chongqing University (Social Science Edition), 2023, 29(1): 117-134.
[7] Xiao Y, Jiang Y, Du M, et al. A new carbon emission reduction mechanism: Carbon generalized system of preferences (CGSP)[J]. Environmental Science and Pollution Research, 2021, 28(1): 1267-1274.
[8] 李治国, 王杰. 中国城乡家庭碳排放核算及驱动因素分析[J]. 统计与决策, 2021, 37(20): 48-52. Li Z G, Wang J. Accounting and driving factors analysis of household carbon emissions in urban and rural China[J]. Statistics & Decision, 2021, 37(20): 48-52.
[9] 曹翔, 高瑀, 刘子琪. 农村人口城镇化对居民生活能源消费碳排放的影响分析[J]. 中国农村经济, 2021(10): 64-83. Cao X, Gao Y, Liu Z Q. The impact of urbanization of rural residents on carbon emissions from household energy consumption[J]. Chinese Rural Economy, 2021(10): 64-83.
[10] 曹雅茹, 王群伟, 周德群. 气候变化如何影响城市经济绿色增长: 作用机制与南北差异[J]. 系统工程理论与实践, 2023, 43(1): 58-75. Cao Y R, Wang Q W, Zhou D Q. How climate change affects urban economic green growth: Mechanisms and differences between north and south[J]. Systems Engineering — Theory & Practice, 2023, 43(1): 58-75.
[11] Yue T, Li M T, Wang Q R, et al. Will residents’ energy-conservation behavior be continued under perception of behavior outcome? The moderating role of attribution style[J]. Resources, Conservation Recycling, 2023, 189: 106745.
[12] Geng Y, Chen W, Liu Z, et al. A bibliometric review: Energy consumption and greenhouse gas emissions in the residential sector[J]. Journal of Cleaner Production, 2017, 159: 301-316.
[13] 王少剑, 刘艳艳, 方创琳. 能源消费CO2 排放研究综述[J]. 地理科学进展, 2015, 34(2): 151-164. Wang L J, Liu Y Y, Fang C L. Review of energy-related CO2 emission in response to climate change[J]. Progress in Geography, 2015, 34(2): 151-164.
[14] 冯玲, 吝涛, 赵千钧. 城镇居民生活能耗与碳排放动态特征分析[J]. 中国人口· 资源与环境, 2011, 21(5): 93-100. Feng L, Lin T, Zhao Q J. Analysis of the dynamic characteristics of urban household energy use and carbon emissions in China[J]. China Population Resources and Environment, 2011, 21(5): 93-100.
[15] 周嘉, 时小翠, 赵靖宇, 等. 中国居民直接生活能源消费碳排放区域差异及影响因素分析[J]. 安全与环境学报, 2019, 19(3): 954-963. Zhou J, Shi X C, Zhao J Y, et al. On regional difference and influential factors of carbon emissions from direct living energy consumption of Chinese residents[J]. Journal of Safety and Environment, 2019, 19(3): 954-963.
[16] Lenzen M. Primary energy and greenhouse cases embodied in Australian final consumption: An input-output analysis[J]. Energy Policy, 1998, 26(6): 495-506.
[17] Majid M R, Moeinzadeh S N, Tifwa H Y. Income-carbon footprint relationships for urban and rural households of Iskandar Malaysia[J]. IOP Conference Series: Earth and Environmental Science, 2014, 18: 12164.
[18] 朱勤, 彭希哲, 吴开亚. 基于结构分解的居民消费品载能碳排放变动分析[J]. 数量经济技术经济研究, 2012, 29(1): 65-77. Zhu Q, Peng X Z, Wu K Y. Analysis on indirect carbon emissions from residential consumption in China based on the structural decomposition[J]. Journal of Quantitative & Technological Economics, 2012, 29(1): 65-77.
[19] Wang Z, Liu W, Yin J. Driving forces of indirect carbon emissions from household consumption in China: An input-output decomposition analysis[J]. Natural Hazards, 2015, 75(S2): 257-272.
[20] Qu J, Maraseni T, Liu L, et al. A comparison of household carbon emission patterns of urban and rural China over the 17year period (1995-2011)[J]. Energies, 2015, 8(9): 10537-10557.
[21] Padgett J P, Sterinemann A C, Clarke J H, et al. A comparison of carbon calculators[J]. Environmental Impact Assessment Review, 2008, 28(2-3): 106-115.
[22] Liu L, Wu G, Wang J, et al. China’s carbon emissions from urban and rural households during 1992-2007[J]. Journal of Cleaner Production, 2011, 19(15): 1754-1762.
[23] 李双江, 陈艺璇, 王肖娅, 等. 城镇化进程中河北省居民生活消费碳排放特征及其影响因素[J]. 西南师范大学学报(自然科学版), 2023, 48(4): 101-108. Li S J, Chen Y X, Wang X Y, et al. Characteristics and impacts of carbon emission on residents’ living consumption of Hebei province in urbanization[J]. Journal of Southwest China Normal University (Natural Science Edition), 2023, 48(4): 101-108.
[24] Liu C. An extended method for key factors in reducing CO2 emissions[J]. Applied Mathematics and Computation, 2007, 189(1): 440-451.
[25] 计志英, 赖小锋, 贾利军. 家庭部门生活能源消费碳排放: 测度与驱动因素研究[J]. 中国人口· 资源与环境, 2016, 26(5): 64-72. Ji Z Y, Lai X F, Jia L J. Measurement and driving factors of carbon emissions from household energy consumption[J]. China Population Resources and Environment, 2016, 26(5): 64-72.
[26] 刘慧, 耿婷婷. 生态环境分区管控视域下中国能源碳减排测度及路径[J]. 上海交通大学学报(哲学社会科学版), 2023, 31(7): 46-58. Liu H, Geng T T. Measurement and path of China’s energy carbon emission reduction from the perspective of ecological environment zoning regulation[J]. Journal of SJTU (Philosophy and Social Sciences), 2023, 31(7): 46-58.
[27] 李国志. 城镇居民生活能源碳排放的省域差异及影响因素[J]. 北京交通大学学报(社会科学版), 2018, 17(3): 32-40. Li G Z. Provincial differences and influencing factors of carbon emissions in urban residents’ energy consumption[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2018, 17(3): 32-40.
[28] 熊永兰, 张志强, 曲建升, 等. 2005-2009年我国省域CO2 排放特征研究[J]. 自然资源学报, 2012, 27(10): 1766- 1777. Xiong Y L, Zhang Z Q, Qu J S, et al. Research on characteristics of provincial CO2 emissions from 2005 to 2009 in China[J]. Journal of Natural Resources, 2012, 27(10): 1766-1777.
[29] 王东, 李玥凝. 广东省居民生活消费碳排放与居民收入关系研究[J]. 中国人口· 资源与环境, 2017, 27(S1): 218-221. Wang D, Li Y N. Relationship between household CO2 emissions and residents’ income in Guangdong province[J]. China Population Resources and Environment, 2017, 27(S1): 218-221.
[30] 张艳, 秦耀辰, 闫卫阳, 等. 我国城市居民直接能耗的碳排放类型及影响因素[J]. 地理研究, 2012, 31(2): 345-356. Zhang Y, Qin Y C, Yan W Y, et al. Urban types and impact factors on carbon emissions from direct energy consumption of residents in China[J]. Geographical Research, 2012, 31(2): 345-356.
[31] 刘春梅, 钱啸吟. "双碳" 目标下中国能源消费碳排放量预测[J]. 资源科学, 2023, 45(10): 1931-1946. Liu C M, Qian X Y. Prediction of carbon emissions from energy consumption in China under the "dual carbon" goal[J]. Resources Science, 2023, 45(10): 1931-1946.
[32] 胡振, 龚薛, 刘华. 基于BP模型的西部城市家庭消费碳排放预测研究——以西安市为例[J]. 干旱区资源与环境, 2020, 34(7): 82-89. Hu Z, Gong X, Liu H. Prediction of household consumption carbon emission in western cities based on BP model: Case of Xi’an city[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 82-89.
[33] Kumar S, Madlener R. CO2 emission reduction potential assessment using renewable energy[J]. Energy, 2016, 97: 273-282.
[34] Yang T, Pan Y Q, Yang Y K, et al. CO2 emissions in China’s building sector through 2050: A scenario analysis based on a bottom-up Model[J]. Energy, 2017, 128: 208-223.
[35] 陈文婕, 吴小刚, 肖竹. 中国四大经济区域道路交通碳排放预测与减排潜力评估——基于私家车轨迹数据的情景模拟 [J]. 经济地理, 2022, 42(7): 44-52. Chen W J, Wu X G, Xiao Z. Carbon emission prediction and emission reduction potential assessment of road traffc in China’s four major economic regions: Scenario simulation based on private vehicle trajectory data[J]. Economic Geography, 2022, 42(7): 44-52.
[36] 国涓, 刘长信, 孙平. 中国工业部门的碳排放: 影响因素及减排潜力[J]. 资源科学, 2011, 33(9): 1630-1640. Guo J, Liu C X, Sun P. Carbon emissions of industrial sectors in China: Influencing factors and emission reduction potential[J]. Resources Science, 2011, 33(9): 1630-1640.
[37] Xia Y, Wang H J, Liu W D. The indirect carbon emission from household consumption in China between 1995- 2009 and 2010-2030: A decomposition and prediction analysis. Computers & Industrial Engineering, 2019, 2(128): 264-276.
[38] 曲建升, 刘莉娜, 曾静静, 等. 中国居民生活碳排放增长路径研究[J]. 资源科学, 2017, 39(12): 2389-2398. Qu J S, Liu L N, Zeng J J, et al. A study on growth path for China’s household CO2 emissions[J]. Resources Science, 2017, 39(12): 2389-2398.
[39] 胡剑波, 罗志鹏, 李峰. 碳达峰目标下中国碳排放强度预测: 基于LSTM和ARIMA-BP模型的分析[J]. 财经科学, 2022(2): 89-101. Hu J B, Luo Z P, Li F. Prediction of China’s carbon emission intensity under the goal of carbon peak analysis based on LSTM and ARIMA-BP model[J]. Finance & Economics, 2022(2): 89-101.
[40] Zhu D, Tao S, Wang R, et al. Temporal and spatial trends of residential energy consumption and air pollutant emissions in China[J]. Applied Energy, 2013, 106(11): 17-24.
[41] 赵金彩, 钟章奇, 卢鹤立, 等. 基于夜间灯光的城市居民直接碳排放及影响因素——以中原经济区为例[J]. 自然资源学报, 2017, 32(12): 2100-2114. Zhao J C, Zhong Z Q, Lu H L, et al. Urban residential CO2 emissions and its determinants: A case study of central plains economic region[J]. Journal of Natural Resources, 2017, 32(12): 2100-2114.
[42] 中华人民共和国住房和城乡建设部. 中国城市建设统计年鉴2022[M]. 北京: 中国统计出版社, 2023. Ministry of Housing and Urban-Rural Development. China Urban Construction Statistical Yearbook 2022[M]. Beijing: China Statistics Press, 2023.
[43] Das N, Roy J. India can increase its mitigation ambition: An analysis based on historical evidence of decoupling between emission and economic growth[J]. Energy for Sustainable Development, 2020, 57: 189-199.
[44] 米红, 张田田, 任正委, 等. 城镇化进程中家庭CO2 排放的驱动因素分析[J]. 中国环境科学, 2016, 36(10): 3183- 3192. Mi H, Zhang T T, Reng Z W, et al. Driving factors of China’s household CO2 emissions in the process of urbanization[J]. China Environmental Science, 2016, 36(10): 3183-3192.
[45] 王锋, 秦豫徽, 刘娟, 等. 多维度城镇化视角下的碳排放影响因素研究——基于中国省域数据的空间杜宾面板模型 [J]. 中国人口· 资源与环境, 2017, 27(9): 151-161. Wang F, Qin Y H, Liu J, et al. A study on the influencing factors of carbon emissions from the perspective of multi-dimensional urbanization[J]. China Population Resources and Environment, 2017, 27(9): 151-161.
[46] Wang C J, Wang F, Zhang X L, et al. Dynamic features and driving mechanism of coal consumption for Guangdong province in China[J]. Journal of Geographical Sciences, 2022, 32(3): 401-420.
[47] Ang B W, Liu F L, Chew E P. Perfect decomposition techniques in energy and environmental analysis[J]. Energy Policy, 2003, 31(14): 1561-1566.
[48] 李晓峰, 徐玖平, 王荫清, 等. BP人工神经网络自适应学习算法的建立及其应用[J]. 系统工程理论与实践, 2004, 24(5): 1-8. Li X F, Xu J P, Wang M Q, et al. The establishment of self-adapting algorithm of BP Neural Network and its application[J]. Systems Engineering — Theory & Practice, 2004, 24(5): 1-8.
[49] 罗长远, 刘子琦, 宋弘. 经济增速放缓对国民心理健康的影响——来自中国家户层面的证据[J]. 经济学(季刊), 2023, 23(2): 604-621. Luo C Y, Liu Z Q, Song H. The impact of economic growth slowdown on public mental health — Evidence from households in China[J]. China Economic Quarterly, 2023, 23(2): 604-621.
[50] 吴康, 张文忠, 张平宇, 等. 中国资源型城市的高质量发展: 困境与突破[J]. 自然资源学报, 2023, 38(1): 1-21. Wu K, Zhang W Z, Zhang P Y, et al. High-quality development of resource-based cities in China: Dilemmas and breakthroughs[J]. Journal of Natural Resources, 2023, 38(1): 1-21.
[51] 周健, 王淑婧, 高琴, 等. 人口特征、经济增长与碳排放的关系研究[J]. 武汉大学学报(哲学社会科学版), 2015, 68(2): 94-101. Zhou J, Wang S J, Gao Q, et al. Demographic, growth and carbon emission[J]. Wuhan University Journal (Philosophy & Social Sciences), 2015, 68(2): 94-101.
[52] 任远. 人口迁移流动与城镇化发展战略任务[J]. 北京行政学院学报, 2024(1): 107-117. Ren Y. Population migration, mobility and the strategic tasks of urbanization development[J]. Journal of Beijing Administration Institute, 2024(1): 107-117.
[53] 邵帅, 张曦, 赵兴荣. 中国制造业碳排放的经验分解与达峰路径——广义迪氏指数分解和动态情景分析[J]. 中国工业经济, 2017(3): 44-63. Shao S, Zhang X, Zhao R X. Empirical decomposition and peaking pathway of carbon dioxide emissions of China’s manufacturing sector — Generalized divisia index method and dynamic scenario analysis[J]. China Industrial Economics, 2017(3): 44-63.
[54] 张剑, 刘景洋, 董莉, 等. 中国能源消费CO2 排放的影响因素及情景分析[J]. 环境工程技术学报, 2023, 13(1): 71-78. Zhang J, Liu J Y, Dong L, et al. Influencing factors and scenario analysis of China’s CO2 emission of energy consumption[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 71-78.
[55] 孙东琪, 陈明星, 陈玉福, 等. 2015-2030年中国新型城镇化发展及其资金需求预测[J]. 地理学报, 2016, 71(6): 1025-1044. Sun D Q, Chen M X, Chen Y F, et al. China’s new-type urbanization and investment demand prediction analysis, 2015-2030[J]. Acta Geographica Sinica, 2016, 71(6): 1025-1044.
[56] 王少剑, 莫惠斌, 方创琳. 珠江三角洲城市群城市碳排放动态模拟与碳达峰[J]. 科学通报, 2022, 67(7): 670-684. Wang S J, Mo H B, Fang C L. Carbon emissions dynamic simulation and its peak of cities in the Pearl River Delta urban agglomeration[J]. Chinese Science Bulletin, 2022, 67(7): 670-684.
[57] Ke J, Zheng N, Fridley D, et al. Potential energy savings and CO2 emissions reduction of China’s cement industry[J]. Energy Policy, 2012, 45: 739-751.

Funding

National Natural Science Foundation of China (72074211);Major Project of National Social Science Foundation of China (23&ZD097, 21&ZD166);Major Talent Special Project of National Social Science Foundation of China(22VRC200)
PDF(770 KB)

676

Accesses

0

Citation

Detail

Sections
Recommended

/