Public data resources and total factor productivity of enterprises—A quasi-natural experiment based on local government data opening

WU Wuqing, LI Qiheng, ZHANG Liuyi, ZHAO Yue

Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (6) : 1815-1833.

PDF(469 KB)
PDF(469 KB)
Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (6) : 1815-1833. DOI: 10.12011/SETP2023-0948

Public data resources and total factor productivity of enterprises—A quasi-natural experiment based on local government data opening

  • WU Wuqing1, LI Qiheng1, ZHANG Liuyi1, ZHAO Yue1,2
Author information +
History +

Abstract

The opening of public data is the government's major strategic move to release the value of data factor. However, whether these data resources are used by the public to release their value needs to be empirically tested. Therefore, based on the perspective of high-quality development of firms, this paper examines the relation between open public data and firms' total factor productivity so as to reflect the value of public data resources in driving force of promoting firms' high-quality development. Taking A-share listed firms from 2010 to 2019 as samples, using a natural experiment based on the launch of the local government data platform, and utilizing the staggered difference-in-differences model, this paper finds that as compared with their counterparts, firms located in provinces with their public data open have higher total factor productivity after the launch of public data platform, indicating that open public data resources can realize their value by promoting firms total factor productivity. The result holds after a variety of robustness tests. Mechanism tests reveal that the main regression effect is more pronounced for firms with managers' greater demand for public data resources or stronger data processing capacity, or for firms with greater demand for public data resources to supervise firms. These results indicate that the promotion of total factor productivity is due to the decrease of information processing cost, which promotes the use of public data resources by internal and external stakeholders of firms. Further analyses show that the open public data reduce the operating expenses, earnings management and financing constraints of firms. This paper enriches the relevant researches on the economic consequence of public data resources and its mechanisms, provides theoretical support for the practice of open government data, and provides reliable causal evidence for the value of data resources.

Key words

public data resources / total factor productivity / open government data / data factor / high-quality development

Cite this article

Download Citations
WU Wuqing , LI Qiheng , ZHANG Liuyi , ZHAO Yue. Public data resources and total factor productivity of enterprises—A quasi-natural experiment based on local government data opening. Systems Engineering - Theory & Practice, 2024, 44(6): 1815-1833 https://doi.org/10.12011/SETP2023-0948

References

[1] Attard J, Orlandi F, Scerri S, et al. A systematic review of open government data initiatives[J]. Government Information Quarterly, 2015, 32(4): 399-418.
[2] 郑磊. 开放政府数据研究: 概念辨析、 关键因素及其互动关系[J]. 中国行政管理, 2015(11): 13-18. Zheng L. Study on open government data: Definitions, factors and interaction[J]. Chinese Public Administration, 2015(11): 13-18.
[3] Ahmadi Zeleti F, Ojo A, Curry E. Exploring the economic value of open government data[J]. Government Information Quarterly, 2016, 33(3): 535-551.
[4] Jetzek T, Avital M, Bjorn-Andersen N. The sustainable value of open government data[J]. Journal of the Association for Information Systems, 2019, 20(6): 702-734.
[5] 付熙雯, 郑磊. 开放政府数据的价值: 研究进展与展望[J]. 图书情报工作, 2020, 64(9): 122-132. Fu X W, Zheng L. The value of open government data: Insights from literature and a research agenda[J]. Library and Information Service, 2020, 64(9): 122-132.
[6] Magalhaes G, Roseira C. Open government data and the private sector: An empirical view on business models and value creation[J]. Government Information Quarterly, 2020, 37(3): 101248.
[7] Gascó-Hernández M, Martin E G, Reggi L, et al. Promoting the use of open government data: Cases of training and engagement[J]. Government Information Quarterly, 2018, 35(2): 233-242.
[8] 陈美, 梁乙凯, 陈朝兵. 开放政府数据用户采纳意向影响机制研究[J]. 图书情报工作, 2023, 67(8): 4-17. Chen M, Liang Y K, Chen C B. Research on impact mechanism of users' adoption intention of open government data[J]. Library and Information Service, 2023, 67(8): 4-17.
[9] 张晨, 万相昱, 姜智超, 等. 开放政府数据的经济增长效应研究[J]. 中国软科学, 2023(2): 1-11. Zhang C, Wan X Y, Jiang Z C, et al. Economic growth effects of open government data[J]. China Soft Science, 2023(2): 1-11.
[10] 于文超, 梁平汉, 高楠. 公开能带来效率吗? —— 政府信息公开影响企业投资效率的经验研究[J]. 经济学(季刊), 2020, 19(3): 1041-1058. Yu W C, Liang P H, Gao N. Can higher level of disclosure bring greater efficiency?—The empirical research on the effect of government information disclosure on firm's investment efficiency[J]. China Economic Quarterly, 2020, 19(3): 1041-1058.
[11] 胡业飞, 孙华俊. 政府信息公开与数据开放的关联及治理逻辑辨析——基于 "政府-市场-社会" 关系变迁视角[J]. 中国行政管理, 2021(2): 31-39. Hu Y F, Sun H J. Distinction between government information disclosure and open government data: From the perspective of government-market-society relationship[J]. Chinese Public Administration, 2021(2): 31-39.
[12] 刘新恒, 丁辉, 李舒娴, 等. 股票市场开放能提高中国企业生产效率吗? —— 基于陆港通的准自然实验[J]. 系统工程理论与实践, 2021, 41(12): 3115-3128. Liu X H, Ding H, Li S X, et al. Does stock market liberalization make firms more productive?—Evidence from Shanghai & Shenzhen-Hong Kong stock connect[J]. Systems Engineering—Theory & Practice, 2021, 41(12): 3115-3128.
[13] 范丹, 付嘉为, 王维国. 碳排放权交易如何影响企业全要素生产率?[J]. 系统工程理论与实践, 2022, 42(3): 591-603. Fan D, Fu J W, Wang W G. How does carbon emission trading influence firm's total factor productivity?[J]. Systems Engineering—Theory & Practice, 2022, 42(3): 591-603.
[14] Guo X C, Li M M, Wang Y L, et al. Does digital transformation improve the firm's performance? From the perspective of digitalization paradox and managerial myopia[J]. Journal of Business Research, 2023, 163: 113868.
[15] 宋敏, 周鹏, 司海涛. 金融科技与企业全要素生产率 —— "赋能" 和信贷配给的视角[J]. 中国工业经济, 2021(4): 138-155. Song M, Zhou P, Si H T. Financial technology and enterprise total factor productivity—Perspective of "enabling" and credit rationing[J]. China Industrial Economics, 2021(4): 138-155.
[16] 赵宸宇, 王文春, 李雪松. 数字化转型如何影响企业全要素生产率[J]. 财贸经济, 2021, 42(7): 114-129. Zhao C Y, Wang W C, Li X S. How does digital transformation affect the total factor productivity of enterprises?[J]. Finance & Trade Economics, 2021, 42(7): 114-129.
[17] 黄勃, 李海彤, 刘俊岐, 等. 数字技术创新与中国企业高质量发展——来自企业数字专利的证据[J]. 经济研究, 2023, 58(3): 97-115. Huang B, Li H T, Liu J Q, et al. Digital technology innovation and the high-quality development of Chinese enterprises: Evidence from enterprise's digital patents[J]. Economic Research Journal, 2023, 58(3): 97-115.
[18] 史丹, 孙光林. 大数据发展对制造业企业全要素生产率的影响机理研究[J]. 财贸经济, 2022, 43(9): 85-100. Shi D, Sun G L. Influence mechanism of big data development on the total factor productivity of manufacturing enterprises[J]. Finance & Trade Economics, 2022, 43(9): 85-100.
[19] 杨慧梅, 江璐. 数字经济、 空间效应与全要素生产率[J]. 统计研究, 2021, 38(4): 3-15. Yang H M, Jiang L. Digital economy, spatial effects and total factor productivity[J]. Statistical Research, 2021, 38(4): 3-15.
[20] 蔡继明, 刘媛, 高宏, 等. 数据要素参与价值创造的途径——基于广义价值论的一般均衡分析[J]. 管理世界, 2022, 38(7): 108-121. Cai J M, Liu Y, Gao H, et al. The approach of data factor participating in value creation: A general equilibrium analysis based on the general theory of value[J]. Journal of Management World, 2022, 38(7): 108-121.
[21] 段尧清, 周密, 尚婷. 政府开放数据公众初始接受行为影响因素结构关系研究[J]. 图书情报工作, 2020, 64(2): 4-12. Duan Y Q, Zhou M, Shang T. Research on the structural relationship of the influencing factors of the initial public acceptance behavior of government open data[J]. Library and Information Service, 2020, 64(2): 4-12.
[22] Jetzek T, Avital M, Bjorn-Andersen N. Data-driven innovation through open government data[J]. Journal of Theoretical and Applied Electronic Commerce Research, 2014, 9(2): 15-16.
[23] Hughes-Cromwick E, Coronado J. The value of US government data to US business decisions[J]. Journal of Economic Perspectives, 2019, 33(1): 131-146.
[24] 陈中飞, 江康奇. 数字金融发展与企业全要素生产率[J]. 经济学动态, 2021(10): 82-99. Chen Z F, Jiang K Q. Development of digital finance and firm's total factor productivity[J]. Economic Perspectives, 2021(10): 82-99.
[25] Chen Y, Yang S P, Li Q. How does the development of digital financial inclusion affect the total factor productivity of listed companies? Evidence from China[J]. Finance Research Letters, 2022, 47: 102956.
[26] 石大千, 李格, 刘建江. 信息化冲击、 交易成本与企业TFP —— 基于国家智慧城市建设的自然实验[J]. 财贸经济, 2020, 41(3): 117-130. Shi D Q, Li G, Liu J J. Informatization impact, transaction cost and TFP of enterprise—Natural experiments based on Chinese smart city construction[J]. Finance & Trade Economics, 2020, 41(3): 117-130.
[27] 姚圣文, 赵兰香, 张耀坤. 智慧城市建设提高企业全要素生产率了吗?[J]. 科学学研究, 2022, 40(11): 1957-1967. Yao S W, Zhao L X, Zhang Y K. Has the construction of smart city improved the total factor productivity of enterprises?[J]. Studies in Science of Science, 2022, 40(11): 1957-1967.
[28] 潘毛毛, 赵玉林. 互联网融合、 人力资本结构与制造业全要素生产率[J]. 科学学研究, 2020, 38(12): 2171-2182. Pan M M, Zhao Y L. Internet convergence, labor structure, and total factor productivity in manufacturing[J]. Studies in Science of Science, 2020, 38(12): 2171-2182.
[29] 张微微, 王曼青, 王媛, 等. 区域数字经济发展如何影响全要素生产率? ——基于创新效率的中介检验分析[J]. 中国软科学, 2023(1): 195-205. Zhang W W, Wang M Q, Wang Y, et al. How does the development of regional digital economy affect TFP?—Analysis of intermediary test based on innovation efficiency[J]. China Soft Science, 2023(1): 195-205.
[30] 彭刚, 李杰, 朱莉. SNA视角下数据资产及其核算问题研究[J]. 财贸经济, 2022, 43(5): 145-160. Peng G, Li J, Zhu L. Research on data assets and corresponding accounting problems from the perspective of SNA[J]. Finance & Trade Economics, 2022, 43(5): 145-160.
[31] 秦荣生. 企业数据资产的确认、 计量与报告研究[J]. 会计与经济研究, 2020, 34(6): 3-10. Qin R S. Identification, measurement and report of enterprise data assets[J]. Accounting and Economics Ressearch, 2020, 34(6): 3-10.
[32] 李静萍. 数据资产核算研究[J]. 统计研究, 2020, 37(11): 3-14. Li J P. Research on recording data assets in national accounts[J]. Statistical Research, 2020, 37(11): 3-14.
[33] 许宪春, 张钟文, 胡亚茹. 数据资产统计与核算问题研究[J]. 管理世界, 2022, 38(2): 16-30. Xu X C, Zhang Z W, Hu Y R. Research on deriving measures of data assets in national accounts[J]. Journal of Management World, 2022, 38(2): 16-30.
[34] 许可. 数据爬取的正当性及其边界[J]. 中国法学, 2021(2): 166-188. Xu K. The legitimacy of data crawling and its boundary[J]. China Legal Science, 2021(2): 166-188.
[35] 刘淑妍, 王湖葩. TOE框架下地方政府数据开放制度绩效评价与路径生成研究——基于20省数据的模糊集定性比较分析[J]. 中国行政管理, 2021(9): 34-41. Liu S Y, Wang H P. Research on performance evaluation and path generation of local government data open system under TOE framework: Qualitative comparative analysis of fuzzy sets based on data from 20 provinces[J]. Chinese Public Administration, 2021(9): 34-41.
[36] Guo R, Zhong R. Do managers learn from analysts about investing? Evidence from internal capital allocation[J]. The Accounting Review, 2023, 98(2): 215-246.
[37] 黄宇漩, 杨胜刚, 陈收, 等. 证券分析师关注与投资-股价敏感性[J]. 系统工程理论与实践, 2023, 43(4): 1022-1043. Huang Y X, Yang S G, Chen S, et al. Security analyst concerns and investment-price sensitivity[J]. Systems Engineering—Theory & Practice, 2023, 43(4): 1022-1043.
[38] Bae J, Biddle G C, Park C W. Managerial learning from analyst feedback to voluntary capex guidance, investment efficiency, and firm performance[J]. Management Science, 2022, 68(1): 583-607.
[39] Dong Y, Li O Z, Lin Y, et al. Does information-processing cost affect firm-specific information acquisition? Evidence from XBRL adoption[J]. Journal of Financial and Quantitative Analysis, 2016, 51(2): 435-462.
[40] Blankespoor E. The impact of information processing costs on firm disclosure choice: Evidence from the XBRL mandate[J]. Journal of Accounting Research, 2019, 57(4): 919-967.
[41] Blankespoor E, Dehaan E, Marinovic I. Disclosure processing costs, investors' information choice, and equity market outcomes: A review[J]. Journal of Accounting and Economics, 2020, 70(2-3): 101344.
[42] Floridi I. The philosophy of information quality[M]. Switzerland: Springer International Publishing, 2014.
[43] Wang H, Lo J. Factors influencing the adoption of open government data at the firm level[J]. IEEE Transactions on Engineering Management, 2020, 67(3): 670-682.
[44] 丁晓东. 从公开到服务: 政府数据开放的法理反思与制度完善[J]. 法商研究, 2022, 39(2): 131-145. Ding X D. From openness to service: Legal reflection and system improvement of government data opening[J]. Studies in Law and Business, 2022, 39(2): 131-145.
[45] 鲁晓东, 连玉君. 中国工业企业全要素生产率估计: 1999-2007[J]. 经济学(季刊), 2012, 11(2): 541-558. Lu X D, Lian Y J. Estimation of total factor productivity of industrial enterprises in China: 1999-2007[J]. China Economic Quarterly, 2012, 11(2): 541-558.
[46] 黄勃, 李海彤, 江萍, 等. 战略联盟、 要素流动与企业全要素生产率提升[J]. 管理世界, 2022, 38(10): 195-212. Huang B, Li H T, Jiang P, et al. Strategic alliance, factor flow and firm total factor productivity growth[J]. Journal of Management World, 2022, 38(10): 195-212.
[47] 许晓芳, 陆正飞. 企业杠杆、 杠杆操纵与经济高质量发展[J]. 会计研究, 2022(6): 3-15. Xu X F, Lu Z F. Corporate leverage, leverage manipulation and high-quality economic development[J]. Accounting Research, 2022(6): 3-15.
[48] 刘慧龙, 张玲玲, 谢婧. 税收征管数字化升级与企业关联交易治理[J]. 管理世界, 2022, 38(6): 158-176. Liu H L, Zhang L L, Xie J. Tax enforcement digitization and the governance of corporate related party transactions[J]. Journal of Management World, 2022, 38(6): 158-176.
[49] 何慧华, 方军雄. 监管型小股东的治理效应: 基于财务重述的证据[J]. 管理世界, 2021, 37(12): 176-195. He H H, Fang J X. The governance effects of regulatory minority shareholders: Evidence from financial restatement[J]. Journal of Management World, 2021, 37(12): 176-195.
[50] 王思文, 文熙安. 出口和创新行为共同提升了企业绩效吗? ——互补性假说的提出与检验[J]. 中国软科学, 2022(10): 180-192. Wang S W, Wen X A. Dose the export and innovation jointly bring improvement in firm performance: Proposed and test of complmentarity hypothesis[J]. China Soft Science, 2022(10): 180-192.
[51] 尹美群, 盛磊, 李文博. 高管激励、 创新投入与公司绩效——基于内生性视角的分行业实证研究[J]. 南开管理评论, 2018, 21(1): 109-117. Yin M Q, Sheng L, Liu W B. Executive incentive, innovation input and corporate performance: An empirical study based on endogeneity and industry categories[J]. Nankai Business Review, 2018, 21(1): 109-117.
[52] 胡景涛, 宿涵宁, 王秀玲. 员工股权激励对企业经营业绩会产生补充的提升效应吗?[J]. 会计研究, 2020(4): 119-129. Hu J T, Su H N, Wang X L. Will employee equity incentive have a complementary promotion effect on corporate operating performance?[J]. Accounting Review, 2020(4): 119-129.
[53] Qian N. Missing women and the price of tea in China: The effect of sex-specific earnings on sex imbalance[J]. Quarterly Journal of Economics, 2008, 123(3): 1251-1285.
[54] 丁宁, 吴晓. 存贷比监管改革与银行风险承担——来自中国商业银行的准自然实验[J]. 金融研究, 2023(2): 96-114. Ding N, Wu X. Effects of regulatory reform on loan-to-deposit ratio and bank risk-taking: A quasi-natural experiment in China's commercial banks[J]. Journal of Financial Research, 2023(2): 96-114.
[55] 江艇. 因果推断经验研究中的中介效应与调节效应[J]. 中国工业经济, 2022(5): 100-120.Jiang T. Mediating effects and moderating effects in causal inference[J]. China Industrial Economics, 2022(5): 100-120.
[56] Roychowdhury S, Shroff N, Verdi R S. The effects of financial reporting and disclosure on corporate investment: A review[J]. Journal of Accounting and Economics, 2019, 68(2-3): 101246.
[57] 张新民, 金瑛. 资产负债表重构: 基于数字经济时代企业行为的研究[J]. 管理世界, 2022, 38(9): 157-175. Zhang X M, Jin Y. A reconstruction of the balance sheet: Based on corporate behavior in the era of digital economy[J]. Journal of Management World, 2022, 38(9): 157-175.
[58] 张叶青, 陆瑶, 李乐芸. 大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据[J]. 经济研究, 2021, 56(12): 42-59. Zhang Y Q, Lu Y, Li L Y. Effects of big data on firm value in China: Evidence from textual analysis of Chinese listed firms' annual reports[J]. Economic Research Journal, 2021, 56(12): 42-59.
[59] Dulong De Rosnay M, Janssen K. Legal and institutional challenges for opening data across public sectors: Towards common policy solutions[J]. Journal of Theoretical and Applied Electronic Commerce Research, 2014, 9(3): 1-14.
[60] 吴武清, 赵越, 苏子豪. 企业信息化建设与审计费用 —— 数字化转型时期的新证据[J]. 审计研究, 2022(1): 106-117. Wu W Q, Zhao Y, Su Z H. Corporate IT construction and audit fees—New evidence in the era of digitalization[J]. Auditing Research, 2022(1): 106-117.
[61] Li K. Does information asymmetry impede market efficiency? Evidence from analyst coverage[J]. Journal of Banking & Finance, 2020, 118: 105856.
[62] Brown S, Hillegeist S A. How disclosure quality affects the level of information asymmetry[J]. Review of Accounting Studies, 2007, 12(2-3): 443-477.
[63] Burgstahler D, Dichev I. Earnings management to avoid earnings decreases and losses[J]. Journal of Accounting and Economics, 1997, 24(1): 99-126.
[64] Duellman S, Ahmed A S, Abdel-Meguid A M. An empirical analysis of the effects of monitoring intensity on the relation between equity incentives and earnings management[J]. Journal of Accounting and Public Policy, 2013, 32(6): 495-517.
[65] 李春涛, 宋敏, 张璇. 分析师跟踪与企业盈余管理——来自中国上市公司的证据[J]. 金融研究, 2014(7): 124-139. Li C T, Song M, Zhang X. Analyst following and corporate earnings management: Evidence from China[J]. Journal of Financial Research, 2014(7): 124-139.
[66] Nienhaus M. Executive equity incentives and opportunistic manager behavior: New evidence from a quasi-natural experiment[J]. Review of Accounting Studies, 2022, 27(4): 1276-1318.
[67] 李青原, 王红建. 货币政策、 资产可抵押性、 现金流与公司投资——来自中国制造业上市公司的经验证据[J]. 金融研究, 2013(6): 31-45. Li Q Y, Wang H J. Monetary policy, asset collaterability, cash flow and corporate investment: Empirical evidence from listed manufacturing companies in China[J]. Journal of Financial Research, 2013(6): 31-45.
[68] 解维敏, 吴浩, 冯彦杰. 数字金融是否缓解了民营企业融资约束?[J]. 系统工程理论与实践, 2021, 41(12): 3129-3146. Xie W M, Wu H, Feng Y J. Can digital financial technology relieve the financing constraints of private enterprises?[J]. Systems Engineering—Theory & Practice, 2021, 41(12): 3129-3146.
[69] Whited T M, Wu G. Financial constraints risk[J]. The Review of Financial Studies, 2006, 19(2): 531-559.

Funding

National Natural Science Foundation of China (72374201, 71871216)
PDF(469 KB)

643

Accesses

0

Citation

Detail

Sections
Recommended

/