Research on identification of key node enterprises of new energy vehicle network based on R&D cascading failures

ZHANG Yanlu, CHAO Zhuoyi, YANG Naiding, YANG Jiaqi

Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (12) : 3997-4010.

PDF(688 KB)
PDF(688 KB)
Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (12) : 3997-4010. DOI: 10.12011/SETP2023-0790

Research on identification of key node enterprises of new energy vehicle network based on R&D cascading failures

  • ZHANG Yanlu1, CHAO Zhuoyi2, YANG Naiding1, YANG Jiaqi1
Author information +
History +

Abstract

Most existing studies evaluate node importance from the perspective of network topology, but ignore the impact of network dynamic characteristics on the node importance evaluation results. But the studies based on the perspective of network dynamics mainly focuse on the abstract networks to identify key nodes, and have some certain limitations to be applicated in real networks. Therefore, this paper identifies key node enterprises of the new energy vehicle research and development network based on the perspective of cascading failures. Firstly, this paper builds a real new energy vehicle research and development network by using new energy vehicle cooperation patent data. Then, a cascade failure model is proposed from three aspects: Defining the initial load of the node enterprise, determining the capacity of the node enterprise, and establishing load propagation rules. Next, numerical simulation method is used to reveal the cascade failure process and rules of the new energy vehicle R&D network under deliberate and random attack strategies. Finally, a simulation analysis of a real new energy vehicle research and development network is conducted to identify the key node enterprises of the new energy vehicle research and development network. The research results have important reference value for preventing large-scale cascading failures caused by the failure of some key node enterprises and ensuring the normal cooperative development of new energy vehicle node enterprises.

Key words

new energy vehicle R&D network / cascading failure / key node identification / numerical simulation

Cite this article

Download Citations
ZHANG Yanlu , CHAO Zhuoyi , YANG Naiding , YANG Jiaqi. Research on identification of key node enterprises of new energy vehicle network based on R&D cascading failures. Systems Engineering - Theory & Practice, 2024, 44(12): 3997-4010 https://doi.org/10.12011/SETP2023-0790

References

[1] Ritala P, Huizingh E, Almpanopoulou A, et al. Tensions in R&D networks: Implications for knowledge search and integration[J]. Technological Forecasting and Social Change, 2017, 120(1): 311-322.
[2] Su J, Yu Y, Tao Y. Measuring knowledge diffusion effciency in R&D networks[J]. Knowledge Management Research & Practice, 2018, 16(2): 1-12.
[3] Todtling F. Innovation networks, collective learning, and industrial policy in regions of Europe[J]. European Planning Studies, 1999, 7(6): 693-697.
[4] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893.
[5] Singh R, Chakraborty A, Manoj B S, et al. GFT centrality: A new node importance measure for complex networks[J]. Physica A: Statistical Mechanics & Its Applications, 2017, 487(C): 185-195.
[6] 阮逸润, 老松杨, 王竣德, 等. 基于领域相似度的复杂网络节点重要度评估算法[J]. 物理学报, 2017, 66(3): 371-379. Ruan Y R, Lao S Y, Wang J D, et al. Node importance measurement based on neighborhood similarity in complex network[J]. Acta Physica Sinica, 2017, 66(3): 371-379.
[7] Ruan Y R, Lao S Y, Xiao Y D, et al. Identifying influence of nodes in complex networks with coreness centrality: Decreasing the impact of densely local connection[J]. Chinese Physics Letters, 2016, 33(2): 028901.
[8] Fan W, Hu P, Liu Z. Multi-attribute node importance evaluation method based on Gini-coeffcient in complex power grids[J]. IET Generation Transmission & Distribution, 2016, 10(9): 2027-2034.
[9] Bian T, Hu J, Deng Y. Identifying influential nodes in complex networks based on AHP[J]. Physica A: Statistical Mechanics & Its Applications, 2017, 479(4): 422-436.
[10] Zhang X, Chen B. Study on node importance evaluation of the high-speed passenger traffc complex network based on the Structural Hole Theory[J]. Open Physics, 2017, 15(1): 1-11.
[11] 曹开臣, 陈明仁, 张千明, 等. 基于网络节点中心性的新闻重要性评价研究[J]. 电子科技大学学报, 2021, 50(2): 285- 293. Cao K C, Chen M R, Zhang Q M, et al. Research on importance evaluation of news based on nodal centralities of complex network[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(2): 285-293.
[12] 杨青, 郑璐, 邹星琪. 基于风险传播网络和K-shell方法的复杂研发项目风险评价[J]. 管理评论, 2021, 33(9): 119- 127. Yang Q, Zheng L, Zou X Q. Risk analysis of complex R&D projects based on risk propagation network and K-shell method[J]. Management Review, 2021, 33(9): 119-127.
[13] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382.
[14] Wang Y, Di Z, Fan Y. Identifying and characterizing nodes important to community structure using the spectrum of the graph[J]. PLOS One, 2011, 6(11): E27418.
[15] Hu P, Fan W, Mei S. Identifying node importance in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2015, 429: 169-176.
[16] Wang S, Du Y, Deng Y. A new measure of identifying influential nodes: Effciency centrality[J]. Communications in Nonlinear Science & Numerical Simulation, 2017, 47: 151-163.
[17] 王梓行, 姜大立, 漆磊, 等. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85. Wang Z H, Jiang D L, Qi L, et al. Complex network invulnerability and node importance evaluation model based on redundancy[J]. Complex Systems and Complexity Science, 2020, 17(3): 78-85.
[18] 谭跃进, 吴俊, 邓宏钟. 复杂网络中节点重要度评估的节点收缩方法[J]. 系统工程理论与实践, 2006, 26(11): 79-83. Tan Y J, Wu J, Deng H Z. Evaluation method for node importance based on node contraction in complex networks[J]. System Engineering — Theory & Practice, 2006, 26(11): 79-83.
[19] Wang J, Wu X, Yan B, et al. Improved method of node importance evaluation based on node contraction in complex networks[J]. Procedia Engineering, 2011, 15: 1600-1604.
[20] 刘娜, 沈江, 于鲲鹏, 等. 基于改进节点收缩法的加权供应链网络节点重要度评估[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(10): 1056-1064. Liu N, Shen J, Yu K P, et al. Weighted supply chain network node importance assessment based on improved node contraction method[J]. Journal of Tianjin University: Science and Technology, 2018, 51(10): 1056-1064.
[21] Ahuja G, Soda G, Zaheer A. The genesis and dynamics of organizational networks[J]. Organization Science, 2012, 23(2): 434-448.
[22] 周育红, 宋光辉. 中国创业投资网络的动态演进实证[J]. 系统工程理论与实践, 2014, 34(11): 2748-2759. Zhou Y H, Song G H. The dynamic evolution of venture capital network in China[J]. Systems Engineering — Theory & Practice, 2014, 34(11): 2748-2759.
[23] Aral S, Walker D. Identifying influential and susceptible members of social networks[J]. Science, 2012, 337(6092): 337.
[24] Sun Z, Sun Y, Chang X, et al. Finding critical nodes in a complex network from information diffusion and Matthew effect aggregation[J]. Expert Systems with Applications, 2023, 233: 120927.
[25] 吴嫣媛, 刘向军. 考虑级联失效影响的复杂网络关键节点识别[J]. 计算机工程与设计, 2021, 42(4): 920-926. Wu Y Y, Liu X J. Identification of key nodes in wireless sensor networks considering cascading failure[J]. Computer Engineering and Design, 2021, 42(4): 920-926.
[26] Kolumbus Y, Solomon S. On the influence maximization problem and the percolation phase transition[J]. Physica A: Statistical Mechanics and its Applications, 2021, 573: 125928.
[27] Hu Y, Ji S, Jin Y, et al. Local structure can identify and quantify influential global spreaders in large scale social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): 7468-7472.
[28] 程光权, 陆永中, 张明星, 等. 复杂网络节点重要度评估及网络脆弱性分析[J]. 国防科技大学学报, 2017, 39(1): 120- 127. Cheng G Q, Lu Y Z, Zhang M X, et al. Node importance evaluation and network vulnerability analysis on complex network[J]. Journal of National University of Defense Technology, 2017, 39(1): 120-127.
[29] 王京北, 杨乃定, 张延禄, 等. 基于CA模型的研发网络级联失效建模及其对任务网络工期风险的影响研究[J]. 管理工程学报, 2019, 33(4): 176-183. Wang J B, Yang N D, Zhang Y L, et al. Modeling of R&D network’s cascading failure based on CA model and its impact on the duration risk of task network[J]. Journal of Industrial Engineering and Engineering Management, 2019, 33(4): 176-183.
[30] Pilkington A, Dyerson R, Tissier O. The electric vehicle: Patent data as indicators of technological development[J]. World Patent Information, 2002, 24(1): 5-12.
[31] Ernst H, Vitt J. The influence of corporate acquisitions on the behaviour of key inventors[J]. R&D Management, 2000, 30(2): 105-119.
[32] Pilkington A, Lee L L, Chan C, et al. Defining key inventors: A comparison of fuel cell and nanotechnology industries[J]. Technological Forecasting & Social Change, 2009, 76(1): 118-127.
[33] Moehrle M G, Walter L, Geritz A, et al. Patent-based inventor profiles as a basis for human resource decisions in research and development[J]. R&D Management, 2005, 35(5): 513-524.
[34] 梁帅, 李海波, 陈娜. 世界新能源汽车专利主体的竞争态势研究[J]. 科技管理研究, 2015, 35(4): 116-121. Liang S, Li H B, Chen N. Research on competitive situation of new energy vehicles patent subject in world[J]. Science and Technology Management Research, 2015, 35(4): 116-121.
[35] 李国秋, 范晓婷. 新能源汽车全球专利分析[J]. 现代情报, 2017, 37(7): 123-130. Li G Q, Fan X T. Global patent analysis of new energy vehicle[J]. Journal of Modern Information, 2017, 37(7): 123-130.
[36] 段东立. 基于负载最近邻偏好分配的复杂网络连锁效应[J]. 复杂系统与复杂性科学, 2015, 12(1): 33-39. Duan D L. Cascading failure of complex networks based on load local preferential redistribution rule[J]. Complex Systems and Complexity Science, 2015, 12(1): 33-39.
[37] Duan D, Ling X, Wu X, et al. Critical thresholds for scale-free networks against cascading failures[J]. Physica A: Statal Mechanics & Its Applications, 2014, 416: 252-258.
[38] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102.
[39] Motter A E. Cascade control and defense in complex networks[J]. Physical Review Letters, 2004, 93(9): 098701.
[40] 王建伟, 荣莉莉, 王铎. 基于节点局域特征的复杂网络上相继故障模型[J]. 管理科学学报, 2010, 13(8): 46-54. Wang J W, Rong L L, Wang D. Model for cascading failures on complex networks based on local characteristics of nodes[J]. Journal of Management Sciences in China, 2010, 13(8): 46-54.
[41] Wang J W, Rong L L. A model for cascading failures in scale-free networks with a breakdown probability[J]. Physica A: Statistical Mechanics & Its Applications, 2009, 388(7): 1289-1298.
[42] 王英聪, 肖人彬. 基于欠载失效的供应链网络级联失效建模[J]. 计算机集成制造系统, 2020, 26(5): 1355-1365. Wang Y C, Xiao R B. Underload cascading failure model for supply chain networks[J]. Computer Integrated Manufacturing Systems, 2020, 26(5): 1355-1365.
[43] 刘慧, 杨乃定, 张延禄. 竞合视角下研发网络关系风险相继传播模型构建与仿真[J]. 系统工程理论与实践, 2017, 37(5): 1313-1321. Liu H, Yang N D, Zhang Y L. Relational risk cascading propagation modeling and simulation in R&D network based co-opetition perspective[J]. Systems Engineering — Theory & Practice, 2017, 37(5): 1313-1321.
[44] Wu W, Lee Y T. Developing global managers’ competencies using the fuzzy DEMATEL method[J]. Expert Systems with Applications, 2007, 32(2): 499-507.
[45] 王建伟. 网络上的相继故障模型研究[D]. 大连: 大连理工大学, 2010. Wang J W. Research on cascading failure model of network[D]. Dalian: Dalian University of Technology, 2010.
[46] Wang J W. Modeling cascading failures in complex networks based on radiate circle[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(15): 4004-4011.

Funding

National Social Science Foundation of China (23AZD018);National Natural Science Foundation of China (71871182);General Program of Humanities and Social Sciences Foundation of Ministry of Education of China (20XJA630003)
PDF(688 KB)

244

Accesses

0

Citation

Detail

Sections
Recommended

/