Optimal investment and reinsurance under partial information and loss aversion

CHEN Feng'e, JI Kunpeng, PENG Xingchun

Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (3) : 932-946.

PDF(991 KB)
PDF(991 KB)
Systems Engineering - Theory & Practice ›› 2024, Vol. 44 ›› Issue (3) : 932-946. DOI: 10.12011/SETP2023-0267

Optimal investment and reinsurance under partial information and loss aversion

  • CHEN Feng'e, JI Kunpeng, PENG Xingchun
Author information +
History +

Abstract

This paper studies the optimal investment and reinsurance strategy for an lossaversed insurer under partial information. First, the filtering technique is used to transform the problem. Then, under the expected S-shaped utility maximization criterion, the semi-analytical expression of optimal investment and reinsurance strategy is derived by using martingale method, partial differential equation, Fourier transform and inverse transform method. Finally, the Monte Carlo method is used in the numerical analysis. The results show that the optimal ratios of investment and reinsurance under ignoring learning are lower than that under filtering estimation. When the reference point level is higher, compared with the ratios of optimal reinsurance and investment in inflation index bond, ignoring learning has a greater effect on the optimal ratio of investment in stock. On the other hand, the optimal strategy under the power utility is more aggressive than the optimal strategy under the S-shaped utility, and the optimal reinsurance ratio has the largest difference under the two types of utility functions, which shows that psychological factors have the most significant impact on the reinsurance strategies.

Key words

S-shaped utility / partial information / investment / reinsurance

Cite this article

Download Citations
CHEN Feng'e , JI Kunpeng , PENG Xingchun. Optimal investment and reinsurance under partial information and loss aversion. Systems Engineering - Theory & Practice, 2024, 44(3): 932-946 https://doi.org/10.12011/SETP2023-0267

References

[1] Schmidli H. Optimal proportional reinsurance policies in a dynamic setting[J]. Scandinavian Actuarial Journal, 2001(1):55-68.
[2] Luo S, Taksar M, Tsoi A. On reinsurance and investment for large insurance portfolios[J]. Insurance:Mathematics and Economics, 2008, 42:434-444.
[3] 张永涛, 赵慧, 荣喜民. 考虑违约风险的兼顾保险公司与再保险公司利益的最优投资与再保险问题研究[J]. 系统工程理论与实践, 2020, 40(7):1721-1734. Zhang Y T, Zhao H, Rong X M. Optimal investment and reinsurance problem for the insurer's and the reinsurer's interests under default risk[J]. Systems Engineering-Theory & Practice, 2020, 40(7):1721-1734.
[4] 朱怀念, 张成科, 曹铭. Heston模型下保险公司和再保险公司的投资与再保险博弈[J]. 中国管理科学, 2021, 29(6):48-59. Zhu H N, Zhang C K, Cao M. Investment and reinsurance games between an insurer and a reinsurer under the heston model[J]. Chinese Journal of Management Science, 2021, 29(6):48-59.
[5] 杨鹏. 具有索赔相依的最优再保险与投资策略[J]. 系统科学与数学, 2022, 42(6):1566-1579. Yang P. Optimal reinsurance and investment strategies with claim dependence[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(6):1566-1579.
[6] Guan G, Liang Z. Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks[J]. Insurance:Mathematics and Economics, 2014, 55:105-115.
[7] Bi J, Cai J. Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets[J]. Insurance:Mathematics and Economics, 2019, 85:1-14.
[8] 张彩斌, 梁志彬, 袁锦泉. Markov调节中基于时滞和相依风险模型的最优再保险与投资[J]. 中国科学(数学), 2021, 51(5):773-796. Zhang C B, Liang Z B, Yuen K Q. Optimal reinsurance and investment in a Markovian regime-switching economy with delay and common shock[J]. Scientia Sinica (Mathematica), 2021, 51(5):773-796.
[9] 米辉, 狄文荣, 林金官. 考虑Vasicek利率和相依风险的最优投资与再保险[J]. 应用概率统计. 2023, 39(2):239-258. Mi H, Di W R, Lin J G. Optimal investment and reinsurance with vasicek interest rate and dependent risk[J]. Chinese Journal of Applied Probability and Statistics, 2023, 39(2):239-258.
[10] Kahneman D, Tversky A. Prospect theory:An analysis of decision under risk[J]. Econometrica, 1979, 47(2):263-292.
[11] Barberis N, Huang M, Santos T. Prospect theory and asset prices[J]. The Quarterly Journal of Economics, 2001, 116(1):1-53.
[12] Berkelaar A B, Kouwenberg R, Post T. Optimal portfolio choice under loss aversion[J]. Review of Economics and Statistics, 2004, 86(4):973-987.
[13] Gao J, Li D, Yao J. When prospect theory preferance meets mean-reverting asset returns:A dynamic asset allocation model[R/OL]. 2017, Available at SSRN 3161166.
[14] Bernard C, Ghossoub M. Static portfolio choice under cumulative prospect theory[J]. Mathematics and Financial Economics, 2010, 2(4):277-306.
[15] De Giorgi E G, Legg S. Dynamic portfolio choice and asset pricing with narrow framing and probability weighting[J]. Journal of Economic Dynamics and Control, 2012, 36(7):951-972.
[16] Yao J, Li D. Prospect theory and trading patterns[J]. Journal of Banking and Finance, 2013, 37(8):171-186.
[17] Nguyen T, Stadje M. Nonconcave optimal investment with value-at-risk constraint:An application to life insurance contracts[J]. SIAM Journal on Control and Optimization, 2020, 58(2):895-936.
[18] 孙庆雅, 荣喜民, 赵慧. S型效用下比例再保险的最优投资策略[J]. 系统工程理论与实践, 2020, 40(2):284-297. Sun Q Y, Rong X M, Zhao H. Optimal proportional reinsurance and investment problem for insurers with loss aversion[J]. Systems Engineering-Theory & Practice, 2020, 40(2):284-297.
[19] 季锟鹏, 彭幸春. 考虑通胀风险与最低绩效保障的损失厌恶型保险公司的最优投资与再保险策略[J]. 数学物理学报, 2022, 42(4):1265-1280. Ji K P, Peng X C. Optimal investment and reinsurance strategies for loss-averse insurer considering inflation risk and minimum performance guarantee[J]. Acta Mathematica Scientia, 2022, 42(4):1265-1280.
[20] Ma J, Lu Z, Chen D. Optimal reinsurance-investment with loss aversion under rough Heston model[J]. Quantitative Finance, 2023, 23:95-109,
[21] Liang Z, Yuen K C, Guo J. Optimal proportional reinsurance and investment in a stock market with OrnsteinUhlenbeck process[J]. Insurance:Mathematics and Economics, 2011, 49:207-215.
[22] Liang Z X, Song M. Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information[J]. Insurance:Mathematics and Economics, 2015, 65(11):66-76.
[23] Zhun S, Shi J. Optimal reinsurance and investment strategies under mean-variance criteria:Partial and full information[J]. Journal of Systems Science and Complexity, 2022, 35:1458-1479.
[24] 王佩, 张玲, 范思雨. 股票误价和信息部分可观测下的时间一致再保险和投资策略[J]. 系统科学与数学, 2021, 41(7):1834-1855. Wang P, Zhang L, Fan S Y. Time-consistent reinsurance and investment strategies with mispricing and partial observation[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(7):1834-1855.
[25] Bi J, Cai J, Zeng Y. Equilibrium reinsurance-investment strategies with partial information and common shock dependence[J]. Annals of Operations Research, 2021, 307:1-24.
[26] Liptser R S, Shiryaev A N. Statistics of random processes[M]. Berlin:Springer, 2001:317-334.
[27] Escobar M, Ferrando S, Rubtsov A. Portfolio choice with stochastic interest rates and learning about stock return predictability[J]. International Review of Economics and Finance, 2016, 41:347-370.
[28] Cox J, Huang C. Optimun consumption and portfolio policies when asset prices follow a diffusion process[J]. Journal of Economic Theory, 1989, 49(1):33-83.
[29] Karatzas I, Lehoczky J P, Sethi S P, et al. Explicit solution of a general consumption/investment problem[J]. Mathematics of Operations Research, 1986, 11(2):261-294.
[30] Karatzas I, Shreve S E. Methods of mathematical finance[M]. New York:Springer, 1998.
[31] Wachter J. Portfolio and consumption decisions under mean-reverting returns:An exact solution for complete market[J]. Journal of Financial and Quantitative Analysis, 2002, 37(1):63-91.
[32] Heston S L. A closed-form solution for options with stochastic volatility with application to bond and currency options[J]. The Review of Financial Studies, 1993, 6(2):327-343.
[33] Duffe D, Pan J, Singleton K. Transform analysis and asset pricing for affne jump-diffusion[J]. Econometrica, 2000, 68(6):1343-1376.
[34] Waller L A, Turnball B W, Hardin J M. Obtaining distribution function by numerical inversion of characteristic functions with application[J]. The American Statisticain, 1995, 49(4):346-350.

Funding

National Natural Science Foundation of China (11701436); Humanities and Social Sciences Research Planning Foundation of Ministry of Education of China (22YJAZH087); Fundamental Research Funds for the Central Universities (3120621545)
PDF(991 KB)

340

Accesses

0

Citation

Detail

Sections
Recommended

/