Structural characteristics and formation mechanism of carbon emission spatial association networks within China

SHAO Shuai, XU Lili, YANG Lili

Systems Engineering - Theory & Practice ›› 2023, Vol. 43 ›› Issue (4) : 958-983.

PDF(8234 KB)
PDF(8234 KB)
Systems Engineering - Theory & Practice ›› 2023, Vol. 43 ›› Issue (4) : 958-983. DOI: 10.12011/SETP2022-1418

Structural characteristics and formation mechanism of carbon emission spatial association networks within China

  • SHAO Shuai1, XU Lili2, YANG Lili3
Author information +
History +

Abstract

Using the social network analysis method, for the first time, this paper builds an exponential random graph model to identify and interpret the formation mechanism of China's carbon emission spatial association networks based on the investigation of the structural characteristics of the networks from 1998 to 2016. The results show that China's carbon emission spatial association networks can be divided into four major plates with different responsibilities and present an evident regional club distribution characteristic. Each plate experienced a recombination process to varying degrees during our sample period. In detail, provinces belonging to the net spillover plate decreased, while provinces belonging to the main benefit and net benefit plates all increased. Meanwhile, although provinces belonging to the broker plate changed, its total number remains unchanged. Moreover, the "carbon emission refuge" effect between regions weakened. Regions tend to participate in the spatial association "activities" of carbon emissions in the forms of "reciprocity" or "clusters," and the spatial association of carbon emissions has the phenomena of "feudal economy" and gradient fault. A high degree of openness, a clean and low-carbon energy structure, and improved energy efficiency are conducive to promoting more carbon emission reception relationships between regions. As energy structure upgrades, the spatial association pattern of carbon emissions has gradient flow trends from west to east and from north to south. The complementarity of inter-regional economic development modes in openness, economic agglomeration, industrial structure, and energy efficiency leads to forming the carbon emission spatial association networks. Thus, the strengthening of regional division and cooperation and close regional trade ties causes the network to present the feature of a "carbon" fate match across a thousand miles drawn by a thread. Therefore, accelerating the implementation of cooperation emission reduction policies, such as regional integration and carbon trading market, will effectively promote the realization of regional collaborative low-carbon transformation development.

Key words

carbon emissions / spatial association networks / social network analysis / exponential random graph model / carbon trading market

Cite this article

Download Citations
SHAO Shuai , XU Lili , YANG Lili. Structural characteristics and formation mechanism of carbon emission spatial association networks within China. Systems Engineering - Theory & Practice, 2023, 43(4): 958-983 https://doi.org/10.12011/SETP2022-1418

References

[1] 王明喜,胡毅,郭冬梅,等.低碳经济:理论实证研究进展与展望[J].系统工程理论与实践, 2017, 37(1): 17-34.Wang M X, Hu Y, Guo D M, et al. Low-carbon economy: Theoretical and empirical progress and prospects[J]. Systems Engineering — Theory & Practice, 2017, 37(1): 17-34.
[2] 周县华, 范庆泉. 碳强度减排目标的实现机制与行业减排路径的优化设计[J]. 世界经济, 2016, 39(7): 168-192.Zhou X H, Fan Q Q. Mechanism of carbon intensity reduction and optimization design of its industrial allocation[J]. The Journal of World Economy, 2016, 39(7): 168-192.
[3] Antimiani A, Costantini V, Kuik O. Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments[J]. Ecological Economics, 2016, 128: 246-259.
[4] Peters G P, Hertwich E G. m CO2 embodied in international trade with implications for global climate policy[J]. Environmental Science & Technology, 2012, 42(5): 1401-1407.
[5] 陈晓红, 汪静, 胡东滨. 碳配额免费分配法下寻租对市场运行效率影响[J]. 系统工程理论与实践, 2018, 38(1): 93-101.Chen X H, Wang J, Hu D B. Study on the effect of rent-seeking on carbon emission trading market performance under free carbon emission allowances[J]. Systems Engineering — Theory & Practice, 2018, 38(1): 93-101.
[6] 肖雁飞, 万子捷, 刘红光. 我国区域产业转移中"碳排放转移"及"碳泄漏"实证研究——基于2002 年、 2007年区域间投入产出模型的分析[J]. 财经研究, 2014, 40(2): 75-84.Xiao Y F, Wang Z J, Liu H G. An empirical study of carbon emission transfer and carbon leakage in regional industrial transfer in China: Analysis based on inter-regional input-output model in 2002 and 2007[J]. Journal of Finance and Economics, 2014, 40(2): 75-84.
[7] Su B, Ang B W. Multi-region input-output analysis of m CO2 emissions embodied in trade: The feedback effects[J]. Applied Energy, 2014, 114(24): 377-384.
[8] 陈锡康.投入产出技术的发展趋势与国际动态[J].系统工程理论与实践, 1991(2): 44-50.Chen X K. On the trends and international development of input-output techniques[J]. Systems Engineering — Theory & Practice, 1991(2): 44-50.
[9] Wang S, Fang C, Ma H, et al. Spatial differences and multi-mechanism of carbon footprint based on GWR model in provincial China[J]. Journal of Geographical Sciences, 2014, 24(4): 612-630.
[10] 武红. 中国省域碳减排: 时空格局、 演变机理及政策建议——基于空间计量经济学的理论与方法[J]. 管理世界, 2015(11): 3-10.Wu H. Provincial carbon emission reduction in China: Space-time pattern, evolution mechanism and policy suggestions[J]. Journal of Management World, 2015(11): 3-10.
[11] 林伯强, 黄光晓. 梯度发展模式下中国区域碳排放的演化趋势——基于空间分析的视角[J]. 金融研究, 2011(12): 35-46.Lin B Q, Huang G X. Dynamics of China's regional carbon emissions under gradient economic developing mode: A view of spatial analysis[J]. Journal of Financial Research, 2011(12): 35-46.
[12] 张友国. 区域间供给驱动的碳排放溢出与反馈效应[J]. 中国人口·资源与环境, 2016, 26(4): 55-62.Zhang Y G. Interregional supply-driven carbon emission spillover-feedback effects[J]. China Population, Resources and Environment, 2016, 26(4): 55-62.
[13] Krichene H, Chakraborty A, Fujiwara Y, et al. Tie-formation process within the communities of the Japanese production network: Application of an exponential random graph model[J]. Applied Network Science, 2019, 4: 5. doi: 10.1007/s41109-019-0112-9.
[14] 范如国. 复杂网络结构范型下的社会治理协同创新[J]. 中国社会科学, 2014(4): 98-120.Fan R G. Synergetic innovation in social governance in a complex network structural paradigm[J]. Social Sciences in China, 2014(4): 98-120.
[15] Broekel T, Balland P A, Burger M. Modeling knowledge networks in economic geography: A discussion of four methods[J]. Annals of Regional Science, 2014, 53(2): 423-452.
[16] 许和连, 孙天阳, 成丽红. "一带一路"高端制造业贸易格局及影响因素研究——基于复杂网络的指数随机图分析[J]. 财贸经济, 2015(12): 74-88.Xu H L, Sun T Y, Cheng L H. Trade patterns and influence factors of high-end manufacturing on "One Belt and One Road": A study based on the exponential random graph models[J]. Finance & Trade Economics, 2015(12): 74-88.
[17] 杨桂元, 吴齐, 涂洋. 中国省际碳排放的空间关联及其影响因素研究——基于社会网络分析方法[J]. 商业经济与管理, 2016(4): 56-68.Yang G Y, Wu Q, Tu Y. Research of China's regional carbon emission spatial correlation and its determinants: Based on the method of social network analysis[J]. Journal of Business Economics, 2016(4): 56-68.
[18] 张翼. 基于空间关联网络结构的中国省域协同碳减排研究[J]. 统计与信息论坛, 2017, 32(2): 63-69.Zhang Y. Study on Chinese provincial collaborative carbon reduction based on spatial correlation network structure[J]. Journal of Statistics and Information, 2017, 32(2): 63-69.
[19] 孙亚男, 刘华军, 刘传明, 等. 中国省际碳排放的空间关联性及其效应研究——基于SNA的经验考察[J]. 上海经济研究, 2016(2): 82-92.Sun Y N, Liu H J, Liu C M, et al. Research on spatial association of provinces carbon emissions and its effects in China[J]. Shanghai Journal of Economics, 2016(2): 82-92.
[20] 韩峰, 谢锐. 生产性服务业集聚降低碳排放了吗? ——对我国地级及以上城市面板数据的空间计量分析[J]. 数量经济技术经济研究, 2017, 34(3): 40-58.Han F, Xie R. Does the agglomeration of producer services reduce carbon emissions?[J]. The Journal of Quantitative & Technical Economics, 2017, 34(3): 40-58.
[21] 李敬, 陈澍, 万广华, 等. 中国区域经济增长的空间关联及其解释——基于网络分析方法[J]. 经济研究, 2014, 49(11): 4-16.Li J, Chen S, Wan G H, et al. Study on the spatial correlation and explanation of regional economic growth in China: Based on analytic network process[J]. Economic Research Journal, 2014, 49(11): 4-16.
[22] 杨子晖, 陈里璇, 陈雨恬. 经济政策不确定性与系统性金融风险的跨市场传染——基于非线性网络关联的研究[J]. 经济研究, 2020, 55(1): 65-81.Yang Z H, Chen L X, Chen Y T. Cross-market contagion of economic policy uncertainty and systemic financial risk: A nonlinear network connectdeness analysis[J]. Economic Research Journal, 2020, 55(1): 65-81.
[23] 孟德友, 陆玉麒. 基于引力模型的江苏区域经济联系强度与方向[J]. 地理科学进展, 2009, 28(5): 697-704.Meng D Y, Lu Y Q. Strength and direction of regional economic linkage in Jiangsu province based on gravity model[J]. Progress in Geography, 2009, 28(5): 697-704.
[24] Tang J, Ma X D, Zhu C G, et al. Study on urban economic region of Huaihai economic region based on economic contacts[J]. Urban Studies, 2009, 5: 18-23.
[25] 刘华军, 刘传明, 孙亚男. 中国能源消费的空间关联网络结构特征及其效应研究[J]. 中国工业经济, 2015(5): 83-95.Liu H J, Liu C M, Sun Y N. Spatial correlation network structure of energy consumption and its effect in China[J]. China Industrial Economics, 2015(5): 83-95.
[26] Liu G, Yang Z, Fath B D, et al. Time and space model of urban pollution migration: Economy-energy-environment nexus network[J]. Applied Energy, 2017, 86: 96-114.
[27] Christensen J H. The danish eulerian hemispheric model: A three-dimensional air pollution model used for the Arctic[J]. Atmospheric Environment, 1997, 31(24): 4169-4191.
[28] 钱春蕾, 叶菁, 陆潮. 基于改进城市引力模型的武汉城市圈引力格局划分研究[J]. 地理科学进展, 2015, 34(2): 237-245.Qian C L, Ye J, Lu C. Gravity zoning in Wuhan metropolitan area based on an improved urban gravity model[J]. Progress in Geography, 2015, 34(2): 237-245.
[29] Liu Z, Guan D, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338.
[30] 杨子晖. 经济增长、 能源消费与二氧化碳排放的动态关系研究[J]. 世界经济, 2011, 34(6): 100-125.Yang Z H. Dynamic relationships among economic growth, energy consumption and carbon emissions[J]. The Journal of World Economy, 2011, 34(6): 100-125.
[31] Guan D, Meng J, Reiner D M, et al. Structural decline in China's m CO2 emissions through transitions in industry and energy systems[J]. Nature Geoscience, 2018, 11(8): 551-555.
[32] Muradian R. Immigration and the environment: Underlying values and scope of analysis[J]. Ecological Economics, 2006, 59(2): 208-213.
[33] Shao S, Yang L, Yu M, et al. Estimation characteristics and determinants of energy-related industrial m CO2 emissions in Shanghai (China) 1994-2009[J]. Energy Policy, 2011, 39(10): 6476-6494.
[34] 王锋, 秦豫徽, 刘娟, 等. 多维度城镇化视角下的碳排放影响因素研究——基于中国省域数据的空间杜宾面板模型[J]. 中国人口·资源与环境, 2017, 27(9): 151-161.Wang F, Qin Y H, Liu J, et al. A study on the influencing factors of carbon emissions from the perspective of multi-dimensional urbanization[J]. China Population, Resources and Environment, 2017, 27(9): 151-161.
[35] Wang Q Q, Huang X J, Chen Z G, et al. Movement of the gravity of carbon emissions per capita and analysis of causes[J]. Journal of Natural Resources, 2009, 24(5): 833-841.
[36] Song J, Feng Q, Wang X, et al. Spatial association and effect evaluation of m CO2 emission in the Chengdu-chongqing urban agglomeration: Quantitative evidence from social network analysis[J]. Sustainability, 2019, 11(1): 1-19.
[37] White H C, Boorman S A, Breiger R L. Social structure from multiple networks. I. block models of roles and positions[J]. American Journal of Sociology, 1976, 81(4): 730-780.
[38] Milo R, Itzkovitz S, Kashtan N, et al. Response to comment on "network motifs: Simple building blocks of complex networks" and "super families of evolved and designed networks"[J]. Science, 2004, 305(5687): 1107. doi: 10.1126/science.1100519.
[39] Contractor N, Wasserman S, Faust K. Testing multi-theoretical multilevel hypotheses about organizational networks: An analytic framework and empirical example[J]. Academy of Management Review, 2006, 31: 681-703.
[40] Hunter D R, Handcock M S, Butts C T, et al. ERGM: A package to fit simulate and diagnose exponential-family models for networks[J]. Journal of Statistical Software, 2008, 24(3): 1-29.
[41] Xiong J, Feng X D, Tang Z W. Understanding user-to-user interaction on government microblogs: An exponential random graph model with the homophily and emotional effect[J]. Information Processing & Management, 2020, 57: 102229.
[42] Holland P W, Leinhardt S. An exponential family of probability distributions for directed graphs[J]. Journal of the American Statistical Association, 1981, 76(373): 33-50.
[43] Frank O. Strauss D. Markov graphs[J]. Journal the American Statistical Association, 1986, 81: 832-842.
[44] Monge P R, Contractor N S. Theories of communication networks[M]. New York: Oxford University Press, 2003.
[45] Kilduff M, Krackhardt D. Interpersonal networks in organizations: Cognition personality dynamics and culture[M]. Cambridge: Cambridge University Press, 2008.
[46] Robins G, Morris M. Advances in exponential random graph (p*) models[J]. Social Networks, 2007, 29(2): 169-172.
[47] Hunter D R, Goodreaua S M, Handcock M S. Goodness of fit of social network models[J]. Journal of the American Statistical Association, 2008, 103: 248-258.
[48] Cowles M K, Carlin B P. Markov chain Monte Carlo convergence diagnostics: A comparative review[J]. Publications of the American Statistical Association, 1996, 91: 883-904.
[49] Shao S, Yang L, Gan C, et al. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial m CO2 emission changes: A case study for Shanghai (China)[J]. Renewable & Sustainable Energy Reviews, 2016, 55: 516-536.
[50] Mi Z, Meng J, Guan D, et al. Chinese m CO2 emission flows have reversed since the global financial crisis[J]. Nature Communications, 2017, 8(1): 1-10.
[51] 邵帅, 张可, 豆建民. 经济集聚的节能减排效应: 理论与中国经验[J]. 管理世界, 2019, 35(1): 36-60.Shao S, Zhang K, Dou J M. Effects and economic agglomeration on energy saving and emission reduction: Theory and empirical evidence from China[J]. Journal of Management World, 2019, 35(1): 36-60.
[52] 张友国. 碳排放视角下的区域间贸易模式: 污染避难所与要素禀赋[J]. 中国工业经济, 2015(8): 5-19.Zhang Y G. China's regional trade patterns under the perspective of carbon emissions: Pollution haven and factor endowment[J]. China Industrial Economics, 2015(8): 5-19.
[53] 刘新争. 基于产业关联的区域产业转移及其效率优化: 投入产出的视角[J]. 经济学家, 2016(6): 43-50.Liu X Z. Regional industrial transfer based on industrial co-relation and its efficiency optimization: Perspectives on input and output[J]. Economist, 2016(6): 43-50.
[54] 赵领娣, 吴栋. 中国能源供给侧碳排放核算与空间分异格局[J]. 中国人口·资源与环境, 2018, 28(2): 48-58.Zhao L D, Wu D. Carbon emission accounting and spatial heterogeneity pattern of China's energy supply side[J]. China Population, Resources and Environment, 2018, 28(2): 48-58.
[55] 卞元超, 吴利华, 白俊红. 市场分割与经济高质量发展: 基于绿色增长的视角[J]. 环境经济研究, 2019, 4(4): 96-114.Bian Y C, Wu L H, Bai J H. Market segmentation and high-quality economic development: Evidence from the perspective of green growth[J]. Journal of Environmental Economics, 2019, 4(4): 96-114.
[56] 汤维祺, 吴力波, 钱浩祺. 从"污染天堂"到绿色增长——区域间高耗能产业转移的调控机制研究[J]. 经济研究, 2016, 51(6): 58-70.Tang W Q, Wu L B, Qian H Q. From pollution-heaven to green-growth: Impact of carbon-market relocation of energy-intensive-sectors[J]. Economic Research Journal, 2016, 51(6): 58-70.
[57] Robins G, Pattison P, Elliott P. Network models for social influence processes[J]. Psychometrika, 2001, 66(2): 161-189.
[58] Windzio M. The network of global migration 1990-2013: Using ERGMs to test theories of migration between countries[J]. Social Networks, 2018, 53: 20-29.
[59] Dean L, Koskinen J, Garry R. Exponential random graph models for social networks: Theory methods and applications[M]. Cambridge: Cambridge University Press, 2013.
[60] Nowicki K, Snijders T. Estimation and prediction for stochastic blockstructure[J]. Journal of the American statistical Association, 2001, 96(455): 1077-1087.
[61] Snijders T A B, Pattison P E, Robins G L, et al. New specifications for exponential random graph models[J]. Sociological Methodology, 2006, 36(1): 99-153.
[62] 侯传璐, 覃成林. 中国省际贸易网络的特征及影响因素——基于铁路货运流量数据及指数随机图模型的分析[J]. 财贸经济, 2019, 40(3): 116-129.Hou C L, Qin C L. Features and influence factors of inter-provincial trade network in China: An analysis based on railway freight flow data and exponential random graph models[J]. Finance & Trade Economics, 2019, 40(3): 116-129.
[63] Copeland B R, Taylor M S. North-south trade and the environment[J]. Quarterly Journal of Economics, 1994, 109(3): 755-787.
[64] Birdsall N, Wheeler D. Trade policy and industrial pollution in Latin America: Where are the pollution havens?[J]. The Journal of Environment & Development, 1993, 2(1): 137-149.
[65] 邵帅, 李欣, 曹建华, 等. 中国雾霾污染治理的经济政策选择——基于空间溢出效应的视角[J]. 经济研究, 2016, 51(9): 73-88.Shao S, Li X, Cao J H, et al. China's economic policy choices for governing smog pollution based on spatial spillover effects[J]. Economic Research Journal, 2016, 51(9): 73-88.
[66] 徐朝阳, 林毅夫. 发展战略与经济增长[J]. 中国社会科学, 2010(3): 94-108.Xu Z Y, Lin Y F. Development strategy and sconomic growth[J]. Social Sciences in China, 2010(3): 94-108.
[67] 邵帅, 杨莉莉. 自然资源丰裕、 资源产业依赖与中国区域经济增长[J]. 管理世界, 2010(9): 26-44.Shao S, Yang L L. Abundance natural resources, resource-based industry dependence and regional economic growth in China[J]. Journal of Management World, 2010(9): 26-44.
[68] Friedrichs J, Inderwildi O R. The carbon curse: Are fuel rich countries doomed to high m CO2 intensities?[J]. Energy Policy, 2013, 62: 1356-1365.
[69] 王兆华,丰超.中国区域全要素能源效率及其影响因素分析——基于2003-2010年的省际面板数据[J].系统工程理论与实践, 2015, 35(6): 1361-1372.Wang Z H, Feng C. Total-factor energy efficiency calculation and its influencing factors analysis in China[J]. Systems Engineering — Theory & Practice, 2015, 35(6): 1361-1372.
[70] 魏楚, 杜立民, 沈满洪. 中国能否实现节能减排目标: 基于DEA方法的评价与模拟[J]. 世界经济, 2010, 33(3): 141-160.Wei C, Du L M, Shen M H. Whether China can achieve the goal of energy saving and emission reduction: Evaluation and simulation based on DEA method[J]. The Journal of World Economy, 2010, 33(3): 141-160.
[71] 李兰冰. 中国能源绩效的动态演化、 地区差距与成因识别——基于一种新型全要素能源生产率变动指标[J]. 管理世界, 2015(11): 40-52.Li L B. Dynamic evolution, regional disparity and origin identification of energy performance in China: Based on a new total factor energy productivity index[J]. Journal of Management World, 2015(11): 40-52.
[72] 张同斌, 孙静. "国际贸易-碳排放"网络的结构特征与传导路径研究[J]. 财经研究, 2019, 45(3): 114-126.Zhang T B, Sun J. A Research on the structural characteristics and transmission path of the "International trade-carbon emission" network[J]. Journal of Finance and Economics, 2019, 45(3): 114-126.
[73] 刘华军, 刘传明, 杨骞. 环境污染的空间溢出及其来源——基于网络分析视角的实证研究[J]. 经济学家, 2015(10): 28-35.Liu H J, Liu C M, Yang Q. Spatial spillover and the source of environment pollution: Empirical study on the perspective of network analysis[J]. Economist, 2015(10): 28-35.
[74] 彭水军, 张文城, 孙传旺. 中国生产侧和消费侧碳排放量测算及影响因素研究[J]. 经济研究, 2015, 50(1): 168-182.Peng S J, Zhang W C, Sun C W. China's production-based and consumption-based carbon emissions and their determinants[J]. Economic Research Journal, 2015, 50(1): 168-182.
[75] 林季红, 刘莹. 内生的环境规制: "污染天堂假说"在中国的再检验[J]. 中国人口·资源与环境, 2013, 23(1): 13-18.Lin J H, Liu Y. Endogenous environmental regulations: Retesting of pollution haven hypothesis in China[J]. China Population, Resources and Environment, 2013, 23(1): 13-18.
[76] 彭水军, 张文城. 国际贸易与气候变化问题: 一个文献综述[J]. 世界经济, 2016, 39(2): 167-192.Peng S J, Zhang W C. International trade and climate change: A literature review[J]. The Journal of World Economy, 2016, 39(2): 167-192.
[77] 孙久文, 张可云, 安虎森, 等. "建立更加有效的区域协调发展新机制"笔谈[J]. 中国工业经济, 2017(11): 26-61.Sun J W, Zhang K Y, An H S, et al. Commentary on establishing a more effective and new mechanism for regional coordinated development[J]. China Industrial Economics, 2017(11): 26-61.
[78] 张伟, 朱启贵, 高辉. 产业结构升级、 能源结构优化与产业体系低碳化发展[J]. 经济研究, 2016, 51(12): 62-75.Zhang W, Zhu Q G, Gao H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system[J]. Economic Research Journal, 2016, 51(12): 62-75.
[79] 黄群慧. "新常态"、 工业化后期与工业增长新动力[J]. 中国工业经济, 2014(10): 5-19.Huang Q H. "The new normal", the late stage of industrialization and the new power of industrial growth[J]. China Industrial Economics, 2014(10): 5-19.
[80] 顾雪松, 韩立岩, 周伊敏. 产业结构差异与对外直接投资的出口效应—— "中国-东道国": 视角的理论与实证[J]. 经济研究, 2016, 51(4): 102-115.Gu X S, Han L Y, Zhou Y M. Difference in industrial structure and effect of ODI on export: Theory and evidence from the "China-host Country" perspective[J]. Economic Research Journal, 2016, 51(4): 102-115.
[81] 张其仔. 中国能否成功地实现雁阵式产业升级[J]. 中国工业经济, 2014(6): 18-30.Zhang Q Z. May China successfully implement flying geese industrial upgrading[J]. China Industrial Economics, 2014(6): 18-30.
[82] 李小胜, 安庆贤, 申真. "十二五"时期中国能源全要素生产率研究[J]. 系统工程理论与实践, 2017, 37(6): 1489-1498.Li X S, An Q X, Shen Z. The energy total-factor efficiency during the "Twelfth Five-Year Plan" of China[J]. Systems Engineering — Theory & Practice, 2017, 37(6): 1489-1498.
[83] 张少军. 贸易的本地偏好之谜: 中国悖论与实证分析[J]. 管理世界, 2013(11): 39-49.Zhang S J. The mystery of local preference in trade: China paradox and empirical analysis[J]. Journal of Management World, 2013(11): 39-49.

Funding

National Natural Science Foundation of China (72243004, 72074150, 71773075)
PDF(8234 KB)

1452

Accesses

0

Citation

Detail

Sections
Recommended

/