The pricing of SSE 50 ETF options based on asymmetric jump rough stochastic volatility model

LIU Xiangdong, HONG Shaopeng

Systems Engineering - Theory & Practice ›› 2023, Vol. 43 ›› Issue (2) : 350-370.

PDF(1137 KB)
PDF(1137 KB)
Systems Engineering - Theory & Practice ›› 2023, Vol. 43 ›› Issue (2) : 350-370. DOI: 10.12011/SETP2022-0430

The pricing of SSE 50 ETF options based on asymmetric jump rough stochastic volatility model

  • LIU Xiangdong, HONG Shaopeng
Author information +
History +

Abstract

Based on the asymmetric jumps in asset prices and the rough in the asset volatility, this paper proposesthe the rough Heston model with asymmetric jump (rHeston-AEDJ) and derives the characteristic functions in the risk-neutral measure. Due to the non-Markovian and non-semimartingale of the model, it cannot be approximated using the Euler method. A hybrid simulation approach is used to approximate the rough Heston model with asymmetric jump and can solve the pricing problem of exotic options under rough volatility with poisson jump. Under the risk-neutral measure, the quasi-closed function of the Euclidean option is derived based on Fourier-SINC. The results of the empirical study show that there is a jump in the price of Shanghai Stock Exchange (SSE) 50 exchange traded fund (ETF) and the volatility Hurst index is much less than 1/2, i.e., there is roughness in the volatility. The pricing experiment of SSE 50 ETF options based on the quasi-closed function finds that the proposed rHeston-AEDJ model has good pricing accuracy both inside and outside the sample. The findings of the study are of great practical significance and application value to the pricing and accurate risk management of domestic and foreign option products.

Key words

rough volatility model / asymmetric exponential distribution / compound Poisson jump / Fourier-SINC / SSE 50 ETF option pricing

Cite this article

Download Citations
LIU Xiangdong , HONG Shaopeng. The pricing of SSE 50 ETF options based on asymmetric jump rough stochastic volatility model. Systems Engineering - Theory & Practice, 2023, 43(2): 350-370 https://doi.org/10.12011/SETP2022-0430

References

[1] 杨兴林,王鹏.基于时变波动率的50ETF参数欧式期权定价[J].数理统计与管理, 2018, 37(1):162-178.Yang X L, Wang P. Parametric european option pricing of 50ETF options based on time-varying volatility[J]. Journal of Applied Statistics and Manage, 2018, 37(1):162-178.
[2] 吴鑫育,李心丹,马超群.基于随机波动率模型的上证50ETF期权定价研究[J].数理统计与管理, 2019, 38(1):115-131.Wu X Y, Li X D, Ma C Q. The pricing of SSE 50 ETF options based on stochastic volatility model[J]. Journal of Applied Statistics and Manage, 2019, 38(1):115-131.
[3] 孙有发, 吴碧云, 郭婷, 等.非仿射随机波动率模型下的50ETF期权定价:基于Fourier-Cosine方法[J].系统工程理论与实践, 2020, 40(4):888-904.Sun Y F, Wu B Y, Guo T, et al. Fourier-Cosine based option pricing for SSE 50 ETF under non-affine stochastic volatility model[J]. Systems Engineering-Theory & Practice, 2020, 40(4):888-904.
[4] 王西梅,赵延龙,史若诗,等.基于局部波动率模型的上证50ETF期权定价研究[J].系统工程理论与实践, 2019, 39(10):2487-2501.Wang X M, Zhao Y L, Shi R S, et al. Empirical analysis of Shanghai 50 ETF options pricing based on local volatility model[J]. Systems Engineering-Theory & Practice, 2019, 39(10):2487-2501.
[5] 瞿慧,陈静雯.考虑跳跃波动与符号跳跃的50ETF期权定价研究[J].管理评论, 2019, 31(9):28-36.Zhai H, Chen J W. Pricing 50ETF Options considering jump volatility and signed jumps[J]. Management Review, 2019, 31(9):28-36.
[6] 郑尊信,王华然,朱福敏.基于Levy-GARCH模型的上证50ETF市场跳跃行为与波动特征研究[J].中国管理科学, 2019, 27(2):41-52.Zheng Z X, Wang H R, Zhu F M. Studies on volatility features and jump behavior of Shanghai 50 ETF market based on Levy-GARCH Model[J]. Chinese Journal of Management Science, 2019, 27(2):41-52.
[7] Gatheral J, Jaisson T, Rosenbaum M. Volatility is rough[J]. Quantitative Finance, 2018, 18(6):933-949.
[8] Jaber E A, Larsson M, Pulido S. Affine volterra processes[J]. The Annals of Applied Probability, 2019, 29(5):3155-3200.
[9] Jusselin P, Rosenbaum M. No-arbitrage implies power-law market impact and rough volatility[J]. Mathematical Finance, 2020, 30(4):1309-1336.
[10] Livieri G, Mouti S, Pallavicini A, et al. Rough volatility:Evidence from option prices[J]. IISE Transactions, 2018, 50(9):767-776.
[11] Fonseca J D, Zhang W. Volatility of volatility is (also) rough[J]. Journal of Futures Markets, 2019, 39(5):600-611.
[12] Bayer C, Friz P, Gatheral J. Pricing under rough volatility[J]. Quantitative Finance, 2016, 16(6):887-904.
[13] Kim S W, Kim J H. Volatility and variance swaps and options in the fractional SABR model[J]. The European Journal of Finance, 2020, 26(17):1725-1745.
[14] Euch O E, Rosenbaum M. The characteristic function of rough Heston models[J]. Mathematical Finance, 2019, 29(1):3-38.
[15] Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options[J]. The Review of Financial Studies, 1993, 6(2):327-343.
[16] Aíit-Sahalia Y, Jacod J. From tick data to semimartingales[J]. The Annals of Applied Probability, 2020, 30(6):2740-2768.
[17] Euch O E, Fukasawa M, Rosenbaum M. The microstructural foundations of leverage effect and rough volatility[J]. Finance and Stochastics, 2018, 22(2):241-280.
[18] Euch O E, Rosenbaum M. Perfect hedging in rough Heston models[J]. The Annals of Applied Probability, 2018, 28(6):3813-3856.
[19] Viens F, Zhang J. A martingale approach for fractional Brownian motions and related path dependent PDEs[J]. The Annals of Applied Probability, 2019, 29(6):3489-3540.
[20] Dupire B. Functional itô calculus[J]. Quantitative Finance, 2019, 19(5):721-729.
[21] Fang F, Oosterlee C W. A novel pricing method for European options based on Fourier-cosine series expansions[J]. SIAM Journal on Scientific Computing, 2009, 31(2):826-848.
[22] Baschetti F, Bormetti G, Romagnoli S, et al. The SINC way:A fast and accurate approach to Fourier pricing[J]. Quantitative Finance, 2021(3):1-20.
[23] 陈国进,王占海.我国股票市场连续性波动与跳跃性波动实证研究[J].系统工程理论与实践, 2010, 30(9):1554-1562.Chen G J, Wang Z H. Continuous volatility and jump volatility in China's stock market[J]. Systems Engineering-Theory & Practice, 2010, 30(9):1554-1562.
[24] 鲁万波,亢晶浩,夏少锋,等.中国股市资产价格日内跳跃行为特征及引发机制研究[J].数理统计与管理, 2021, 40(1):135-147.Lu W B, Kang J H, Xia S F, et al. Testing and triggering for jumps on intraday asset price in Chinese stock market[J]. Journal of Applied Statistics and Manage, 2021, 40(1):135-147.
[25] 唐勇,张伯新.基于高频数据的中国股市跳跃特征实证分析[J].中国管理科学, 2013, 21(5):29-39.Tang Y, Zhang B X. The empirical analysis of jump characteristics of China's stock market based on high frequency data[J]. Chinese Journal of Management Science, 2013, 21(5):29-39.
[26] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1):125-144.
[27] Kou S G. A jump-diffusion model for option pricing[J]. Management Science, 2002, 48(8):1086-1101.
[28] Kou S G, Wang H. Option pricing under a double exponential jump diffusion model[J]. Management Science, 2004, 50(9):1178-1192.
[29] Bates D S. Jumps and stochastic volatility:Exchange rate processes implicit in deutsche mark options[J]. The Review of Financial Studies, 1996, 9(1):69-107.
[30] Forde M, Smith B, Viitasaari L. Rough volatility, CGMY jumps with a finite history and the Rough Heston model-small-time asymptotics in the regime[J]. Quantitative Finance, 2021, 21(4):541-563.
[31] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4):422-437.
[32] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002, 29(1):3-22.
[33] Pan J. The jump-risk premia implicit in options:Evidence from an integrated time-series study[J]. Journal of financial economics, 2002, 63(1):3-50.
[34] Bennedsen M, Lunde A, Pakkanen M S. Hybrid scheme for Brownian semistationary processes[J]. Finance and Stochastics, 2017, 21(4):931-965.
[35] Andersen T G, Dobrev D, Schaumburg E. Jump-robust volatility estimation using nearest neighbor truncation[J]. Journal of Econometrics, 2012, 169(1):75-93.
[36] Aít-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process[J]. The Annals of Statistics, 2009, 37(1):184-222.
[37] Black F, Scholes M S. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
[38] Li C, Tao C. On the fractional Adams method[J]. Computers & Mathematics with Applications, 2009, 58(8):1573-1588.

Funding

National Natural Science Foundation of China (71471075); The Fundamental Research Funds for the Central Universities (19JNLH09); Key Project of Industry University Research Innovation Fund of Science and Technology Development Center of the Ministry of Education (2019J01017); Key Platforms and Scientific Research Projects in Guangdong Province, Provincial Innovation Team Project (2016WCXTD004)
PDF(1137 KB)

970

Accesses

0

Citation

Detail

Sections
Recommended

/