Review of supply-demand matching and scheduling in shared manufacturing

YAN Pengyu, YANG Liu, CHE Ada

Systems Engineering - Theory & Practice ›› 2022, Vol. 42 ›› Issue (3) : 811-832.

PDF(1385 KB)
PDF(1385 KB)
Systems Engineering - Theory & Practice ›› 2022, Vol. 42 ›› Issue (3) : 811-832. DOI: 10.12011/SETP2021-0422

Review of supply-demand matching and scheduling in shared manufacturing

  • YAN Pengyu1, YANG Liu1, CHE Ada2
Author information +
History +

Abstract

While giving rise to the transformation of the operation patterns of the manufacturing industry,shared manufacturing brings new opportunities as well as challenges to the theories and methods of production operations and management.The existing literature conducts comprehensive reviews on the cloud manufacturing techniques that shared manufacturing relies on and the research status of capacity allocation of participating enterprises.However,there is a lack of surveys on the progress of operation management of shared manufacturing platform.This study first analyzes real cases of shared manufacturing,and summarizes the typical characteristics and classification from the perspective of sharing economy and platform operation.Then,this paper summarizes the evaluation index system of supply-demand matching and gives a comprehensive review on the operational optimization,matching and scheduling models and solution algorithms of two types of supply-demand matching and scheduling research,namely "order-capacity selection" and "order-capacity mutual selection".Finally,we compare the shared manufacturing with the cloud computing and classical production scheduling problems and discuss the future studies.

Key words

shared manufacturing / platform operation / supply-demand matching / production scheduling / review

Cite this article

Download Citations
YAN Pengyu , YANG Liu , CHE Ada. Review of supply-demand matching and scheduling in shared manufacturing. Systems Engineering - Theory & Practice, 2022, 42(3): 811-832 https://doi.org/10.12011/SETP2021-0422

References

[1] 朱晗. O2O背景下的共享经济研究[J].系统工程理论与实践, 2021, 41(2):411-420.Zhu H. Research on sharing economy in the context of O2O[J]. Systems Engineering — Theory & Practice, 2021, 41(2):411-420.
[2] 康伟,姜宝.数字经济的内涵、挑战及对策分析[J].电子科技大学学报(社科版), 2018, 20(5):12-18.Kang W, Jiang B. Analysis on the connotation, challenge and countermeasures of digital economy[J]. Journal of University of Electronic Science and Technology of China (Social Sciences Edition), 2018, 20(5):12-18.
[3] 中国国家信息中心分享经济研究中心.中国制造业产能共享发展年度报告(2018)[EB/OL].[2018-02-27]. http://www.sic.gov.cn/archiver/sic/upfile/files/default/20180320144909212700.pdf. Sharing Economy Committee, State Information Center. Annual report on China's shared economic development (2018)[EB/OL].[2018-02-27]. http://www.sic.gov.cn/archiver/sic/upfile/files/default/20180320144909212700.pdf.
[4] 杨桂菊.代工企业转型升级:演进路径的理论模型——基于3家本土企业的案例研究[J].管理世界, 2010(6):132-142.Yang G J. The transitional upgrading of OEM:The theoretical model of the evolutional channel — A case study based on three local enterprises[J]. Management World, 2010(6):132-142.
[5] 中国中央人民政府.《关于深化"互联网+先进制造业"发展工业互联网的指导意见》[EB/OL].[2017-11-27].http://www.gov.cn/zhengce/content/2017-11/27/content_5242582.htm. The State Council. The guiding opinions of the state council on deepening the"Internet+Advanced Manufacturing Industry"to develop the industrial internet[EB/OL].[2017-11-27]. http://www.gov.cn/zhengce/content/2017-11/27/content_5242582.htm.
[6] 中国中央人民政府.《关于深化制造业与互联网融合发展的指导意见》[EB/OL].[2016-05-20]. http://www.gov.cn/zhengce/content/2016-05/20/content_5075099.htm. The State Council. The state council's guidance on deepening the integration development between manufacturing and internet[EB/OL].[2016-05-20]. http://www.gov.cn/zhengce/content/2016-05/20/content_5075099.htm.
[7] 盘和林."互联网+制造业"是产业发展的必然趋势[EB/OL].[2017-10-11]. http://news.cyol.com/content/2017-10/11/content_16570323.htm. Pan H L. "Internet+Manufacturing Industry" is an inevitable trend of industrial development[EB/OL].[2017-10-11]. http://news.cyol.com/content/2017-10/11/content_16570323.htm.
[8] 徐寅峰,智荣腾,郑斐峰,等.考虑共享机器租借费用的在线订单加工策略及竞争分析[J/OL].中国管理科学, 1-10[2022-01-18]. Xu Y F, Zhi R T, Zheng F F, et al. online strategy and competitive analysis of production order scheduling problem with rental cost of shared machines[J/OL]. Chinese Journal of Management Science, 1-10[2022-01-18].
[9] Brandt E. Deborah Wince-Smith:A vision for shared manufacturing[J]. Mechanical Engineering, 1990, 112(12):52-55.
[10] Olsen T L, Tomlin B. Industry 4.0:Opportunities and challenges for operations management[J]. Manufacturing & Service Operations Management, 2020, 22(1):113-122.
[11] 姚锡凡,张剑铭, LIN Yingzi.智慧制造系统的基础理论与技术体系[J].系统工程理论与实践, 2016, 36(10):2699-2711.Yao X F, Zhang J M, Lin Y Z. The basic theory and technical framework for wisdom manufacturing systems[J]. Systems Engineering — Theory & Practice, 2016, 36(10):2699-2711.
[12] 任神河,郑寇全,关冬冬,等.基于IFTS的云计算网络动态负载均衡方法[J].系统工程理论与实践, 2019, 39(5):1298-1307.Ren S H, Zheng K Q, Guan D D, et al. The dynamic load balancing method of cloud computing network based on intuitionistic fuzzy time series[J]. Systems Engineering — Theory & Practice, 2019, 39(5):1298-1307.
[13] MFG平台. https://www.mfg.com/.
[14] GE"Predix". https://www.ge.com/cn/b2b/digital/predix.
[15] 西门子"Mindsphere". https://new.siemens.com/cn/zh/products/software/mindsphere.html.
[16] PTC "Thing Worx". https://developer.thingworx.com/en.
[17] 阿里巴巴"淘工厂". https://tgc.1688.com/.
[18] 海智在线共享制造平台. https://www.haizol.com/.
[19] 辅料易共享制造平台. http://www.fuliaoyi.com/.
[20] 制造业信息化数据分析服务平台.淘工厂——中国特色工业4.0创新[EB/OL].[2017-10-19].https://www.sohu.com/a/199031885_286727. China Integration of Industrialization and Industrialization Service Alliance. Tao Factory-Industry 4.0 innovation with Chinese characteristics[EB/OL].[2017-10-19]. https://www.sohu.com/a/199031885_286727.
[21] 吴贵生,蔺雷.我国制造企业"服务增强"的实证研究及政策建议[J].管理工程学报, 2011(4):94-102.Wu G S, Lin L. An empirical study on service-enhancement in China's manufacturing sectors and policy implications[J]. Journal of Industrial Engineering and Engineering Management, 2011(4):94-102.
[22] 尹洪涛.生产性服务业与制造业融合的主要价值增值点[J].管理学报, 2015, 12(8):1204-1209.Yin H T. The main value-added points in the integration of producer services and manufacturing industries[J]. Chinese Journal of Management, 2015, 12(8):1204-1209.
[23] Yu C, Xu X, Yu S, et al. Shared manufacturing in the sharing economy:Concept, definition and service operations[J]. Computers & Industrial Engineering, 2020, 146:106602.
[24] 李辉,谭显春,顾佰和,等.物联网环境下碳配额和减排双重约束的企业资源共享策略[J].系统工程理论与实践, 2018, 38(12):3085-3096.Li H, Tan X C, Gu B H, et al. Manufacturer resource sharing strategies with dual constraints on carbon quota and emission reduction in internet of things[J]. Systems Engineering — Theory & Practice, 2018, 38(12):3085-3096.
[25] 李伯虎,张霖,王时龙,等.云制造——面向服务的网络化制造新模式[J].计算机集成制造系统, 2010, 16(1):1-8. Li B H, Zhang L, Wang S L, et al. Cloud manufacturing:A new service-oriented networked manufacturing model[J]. Computers & Industrial Engineering, 2010, 16(1):1-8.
[26] 齐二石,李天博,刘亮,等.云制造环境下企业制造资源共享的演化博弈分析[J].运筹与管理, 2017, 26(2):25-34. Qi E S, Li T B, Liu L, et al. The evolutionary game analysis of the sharing of manufacturing resource in the environment of cloud manufacturing[J]. Operations Research and Management Science, 2017, 26(2):25-34.
[27] 程颖,戚庆林,陶飞.新一代信息技术驱动的制造服务管理:研究现状与展望[J].中国机械工程, 2018, 29(18):2177-2188. Cheng Y, Qi Q L, Tao F. New IT-driven manufacturing service management:Research status and prospect[J]. China Mechanical Engineering, 2018, 29(18):2177-2188.
[28] Kusiak A. Smart manufacturing[J]. International Journal of Production Research, 2018, 56(1-2):508-517.
[29] 胡艳娟,武理哲,张霖,等.云制造服务评价理论与方法研究综述[J].计算机集成制造系统, 2017, 23(3):640-649.Hu Y J, Wu L Z, Zhang L, et al. Review on theory and method of cloud manufacturing service evaluation[J]. Computer Integrated Manufacturing Systems, 2017, 23(3):640-649.
[30] 周龙飞,张霖,刘永奎.云制造调度问题研究综述[J].计算机集成制造系统, 2017, 23(6):1147-1166.Zhou L F, Zhang L, Liu Y K. Survey on scheduling problem in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2017, 23(6):1147-1166.
[31] Liu Y, Wang L, Wang X V, et al. Scheduling in cloud manufacturing:State-of-the-art and research challenges[J]. International Journal of Production Research, 2019, 57(15-16):4854-4879.
[32] Bouzary H, Chen F F. Service optimal selection and composition in cloud manufacturing:A comprehensive survey[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):795-808.
[33] 程颖,陶飞,张霖,等.面向服务的制造系统中制造服务供需匹配研究综述与展望[J].计算机集成制造系统, 2015, 21(7):1930-1940.Cheng Y, Tao F, Zhang L, et al. Supply-demand matching of manufacturing service in service-oriented manufacturing systems[J]. Computer Integrated Manufacturing Systems, 2015, 21(7):1930-1940.
[34] 李伯虎,张霖,任磊,等.再论云制造[J].计算机集成制造系统, 2011, 17(3):449-457.Li B H, Zhang L, Ren L, et al. Further discussion on cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2011, 17(3):449-457.
[35] 李凯,肖巍,朱晓曦.基于云平台的共享制造模式定价策略[J].控制与决策, 2022, 37(4):1056-1066. Li K, Xiao W, Zhu X X. Pricing strategies for sharing manufacturing model based on the cloud platform[J]. Control and Decision, 2022, 37(4):1056-1066.
[36] 智布互联共享制造平台. https://www.sfabric.com/.
[37] 海尔"海创汇"共享制造平台. http://www.ihaier.com/.
[38] "航天云网"共享制造平台. http://www.casicloud.com/.
[39] 美的"美创平台"共享制造平台. http://www.iqlik.net/.
[40] "上海明匠智能"共享制造平台. www.shmingjiang.com.
[41] "生意帮"共享制造平台. http://www.easylinking.cn/.
[42] Tao F, Laili Y J, Xu L D, et al. FC-PACO-RM:A parallel method for service composition optimal-selection in cloud manufacturing system[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4):2023-2033.
[43] Tao F, Zhang L, Guo H, et al. Typical characteristics of cloud manufacturing and several key issues of cloud service composition[J]. Computer Integrated Manufacturing Systems, 2011, 17(3):477-486.
[44] Liu Y, Xu X, Zhang L, et al. Workload-based multi-task scheduling in cloud manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2017, 45:3-20.
[45] Lartigau J, Xu X, Nie L, et al. Cloud manufacturing service composition based on QoS with geo-perspective transportation using an improved Artificial Bee Colony optimisation algorithm[J]. International Journal of Production Research, 2015, 53(14):4380-4404.
[46] Cao Y, Wang S, Kang L, et al. A TQCS-based service selection and scheduling strategy in cloud manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4):235-251.
[47] Laili Y, Tao F, Zhang L, et al. A study of optimal allocation of computing resources in cloud manufacturing systems[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(5):671-690.
[48] Huang B, Li C, Tao F. A chaos control optimal algorithm for QoS-based service composition selection in cloud manufacturing system[J]. Enterprise Information Systems, 2014, 8(4):445-463.
[49] Chen F, Dou R, Li M, et al. A flexible QoS-aware Web service composition method by multi-objective optimization in cloud manufacturing[J]. Computers & Industrial Engineering, 2016, 99:423-431.
[50] Zhou J, Yao X. A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):3371-3387.
[51] Zhang L, Luo Y, Tao F, et al. Cloud manufacturing:A new manufacturing paradigm[J]. Enterprise Information Systems, 2014, 8(2):167-187.
[52] Tao F, Cheng J, Cheng Y, et al. SDMSim:A manufacturing service supply-demand matching simulator under cloud environment[J]. Robotics and Computer-integrated Manufacturing, 2017, 45:34-46.
[53] Tao F, Cheng Y, Da Xu L, et al. CCIoT-CMfg:Cloud computing and internet of things — Based cloud manufacturing service system[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2):1435-1442.
[54] Zheng H, Feng Y, Tan J. A fuzzy QoS-aware resource service selection considering design preference in cloud manufacturing system[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4):371-379.
[55] Wu D, Greer M J, Rosen D W, et al. Cloud manufacturing:Strategic vision and state-of-the-art[J]. Journal of Manufacturing Systems, 2013, 32(4):564-579.
[56] Tao F, Zhang L, Guo H, et al. Typical characteristics of cloud manufacturing and several key issues of cloud service composition[J]. Computer Integrated Manufacturing Systems, 2011, 17(3):477-486.
[57] Lu Y, Xu X. A semantic web-based framework for service composition in a cloud manufacturing environment[J]. Journal of Manufacturing Systems, 2017, 42:69-81.
[58] Xiang F, Jiang G Z, Xu L L, et al. The case-library method for service composition and optimal selection of big manufacturing data in cloud manufacturing system[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(1-4):59-70.
[59] Cheng T C E, Wu Y N. A multiproduct, multicriterion supply-demand network equilibrium model[J]. Operations Research, 2006, 54(3):544-554.
[60] Bandyopadhyay S, Bhattacharya R. A generalized measure of bullwhip effect in supply chain with ARMA demand process under various replenishment policies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):963-979.
[61] Tao F, Zhao D, Hu Y, et al. Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system[J]. IEEE Transactions on Industrial Informatics, 2008, 4(4):315-327.
[62] Wang S, Guo L, Kang L, et al. Research on selection strategy of machining equipment in cloud manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1549-1563.
[63] 苏凯凯,徐文胜,李建勇.云制造环境下基于双层规划的资源优化配置方法[J].计算机集成制造系统, 2015, 21(7):1941-1952.Su K K, Xu W S, Li J Y. Manufacturing resource allocation method based on bi-level programming in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2015, 21(7):1941-1952.
[64] Li W, Zhu C, Yang L T, et al. Subtask scheduling for distributed robots in cloud manufacturing[J]. IEEE Systems Journal, 2015, 11(2):941-950.
[65] 邰丽君,胡如夫,赵韩,等.面向云制造服务的制造资源多目标动态优化调度[J].中国机械工程, 2013, 24(12):1616-1622.Tai L J, Hu R F, Zhao H, et al. Multi-objective dynamic scheduling of manufacturing resource to cloud manufacturing services[J]. China Mechanical Engineering, 2013, 24(12):1616-1622.
[66] 赵金辉,王学慧.基于服务质量的云制造服务双向匹配模型[J].计算机集成制造系统, 2016, 22(1):104-112.Zhao J H, Wang X H. Two-sided matching model of cloud service based on QoS in cloud manufacturing environment[J]. Computer Integrated Manufacturing Systems, 2016, 22(1):104-112.
[67] Que Y, Zhong W, Chen H, et al. Improved adaptive immune genetic algorithm for optimal QoS-aware service composition selection in cloud manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9):4455-4465.
[68] 易安斌,姚锡凡,周宏甫,等.云制造环境下设备资源的多目标优化选择[J].计算机集成制造系统, 2017, 23(6):1187-1195.Yi A B, Yao X F, Zhou H F, et al. Multi-objective optimal selection of equipment resources in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2017, 23(6):1187-1195.
[69] 苏凯凯,徐文胜,李建勇.云制造环境下基于非合作博弈的资源优化配置方法[J].计算机集成制造系统, 2015, 21(8):2228-2239.Su K K, Xu W S, Li J Y. Manufacturing resource allocation method based on non-cooperative game in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2015, 21(8):2228-2239.
[70] Li Y X, Xu X M, Yao X F, et al. Formal verification of cloud manufacturing service composition and BPEL codes generation based on extended process calculus[J]. Information Technology Journal, 2014, 13(11):1779-1785.
[71] 马文龙,朱李楠,王万良.云制造环境下基于QoS感知的云服务选择模型[J].计算机集成制造系统, 2014, 20(5):1246-1254.Ma W L, Zhu L N, Wang W L. Cloud service selection model based on QoS-aware in cloud manufacturing environment[J]. Computer Integrated Manufacturing Systems, 2014, 20(5):1246-1254.
[72] 魏乐,赵秋云,舒红平.云制造环境下基于可信评价的云服务选择[J].计算机应用, 2013, 33(1):23-27.Wei L, Zhao Q Y, Shu H P. Cloud service selection based on trust evaluation for cloud manufacturing environment[J]. Journal of Computer Applications, 2013, 33(1):23-27.
[73] Yuan M, Zhou Z, Cai X, et al. Service composition model and method in cloud manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61:101840.
[74] Yuan M, Cai X, Zhou Z, et al. Dynamic service resources scheduling method in cloud manufacturing environment[J]. International Journal of Production Research, 2019, 59(2):542-559.
[75] Yi G, Hu H, Zhang S, et al. Composition modeling for manufacturing resource cloud service[J]. Service Oriented Computing and Applications, 2020, 14:135-147.
[76] 陈晟恺,方水良,唐任仲.基于需求预测的云制造服务租赁配置优化[J].计算机集成制造系统, 2020, 26(11):2944-2954.Chen S K, Fang S L, Tang R Z. Demand forecasting based optimization of service renting configuration for cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2020, 26(11):2944-2954.
[77] Zhou L, Zhang L, Ren L, et al. Real-time scheduling of cloud manufacturing services based on dynamic data-driven simulation[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9):5042-5051.
[78] Liu Z Z, Song C, Chu D H, et al. An approach for multipath cloud manufacturing services dynamic composition[J]. International Journal of Intelligent Systems, 2017, 32(4):371-393.
[79] 程丽军,王艳.面向云端融合的任务-资源双边匹配决策模型[J].系统仿真学报, 2018, 30(11):4348-4358.Cheng L J, Wang Y. Two-sided matching decision model between task and resource for cloud fusion[J]. Journal of System Simulation, 2018, 30(11):4348-4358.
[80] 赵道致,李锐.考虑主体心理预期的云制造资源双边匹配机制[J].控制与决策, 2017, 32(5):871-878.Zhao D Z, Li R. Two-sided matching mechanism with agents'expectation for cloud manufacturing resource[J]. Control and Decision, 2017, 32(5):871-878.
[81] 何巍,贾国柱,孔继利,等.基于可持续性的云制造多任务调度[J].中国机械工程, 2018, 29(18):2215-2225.He W, Jia G Z, Kong J L, et al. Sustainability-based multi-task scheduling in cloud manufacturing[J]. China Mechanical Engineering, 2018, 29(18):2215-2225.
[82] 任磊,任明仑.基于竞争与协同效应的复杂制造任务一对多双边匹配模型[J].计算机集成制造系统, 2018, 24(5):1110-1123. Ren L, Ren M L. One-to-many two-sided matching method of wisdom manufacturing task based on competition and synergy effect[J]. Computer Integrated Manufacturing Systems, 2018, 24(5):1110-1123.
[83] Georgievski I, Aiello M. HTN planning:Overview, comparison, and beyond[J]. Artificial Intelligence, 2015, 222:124-156.
[84] Argoneto P, Renna P. Supporting capacity sharing in the cloud manufacturing environment based on game theory and fuzzy logic[J]. Enterprise Information Systems, 2016, 10(2):193-210.
[85] 陈友玲,段克华,刘舰,等.云制造环境下基于双层规划的资源优化配置模型[J].计算机应用研究, 2019, 36(12):3713-3717+3724.Chen Y L, Duan K H, Liu J, et al. Manufacturing resource optimization allocation model based on bi-level programming in cloud manufacturing[J]. Application Research of Computers, 2019, 36(12):3713-3717+3724.
[86] 张笛,孙涛,闫超栋,等.多种形式偏好信息下考虑主体心理行为的双边匹配方法[J].计算机集成制造系统, 2018, 24(12):3136-3143.Zhang D, Sun T, Yan C D, et al. Two-sided matching method considering psychological behavior of agents based on multi-form preference information[J]. Computer Integrated Manufacturing Systems, 2018, 24(12):3136-3143.
[87] 刘卫宁,刘波,孙棣华.面向多任务的制造云服务组合[J].计算机集成制造系统, 2013, 19(1):199-209.Liu W N, Liu B, Sun D H. Multi-task oriented service composition in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2013, 19(1):199-209.
[88] 任磊,任明仑.基于学习与协同效应的云制造任务动态双边匹模型[J].中国管理科学, 2018, 26(7):63-70.Ren L, Ren M L. Dynamic two-sided matching method of cloud manufacturing task based on learning and synergy effect[J]. Chinese Journal of Management Science, 2018, 26(7):63-70.
[89] Rahman H M M, Horiguchi S. HTN:A new hierarchical interconnection network for massively parallel computers[J]. IEICE Transactions on Information and Systems, 2003, 86(9):1479-1486.
[90] Liu Y, Zhang L, Tao F, et al. Resource service sharing in cloud manufacturing based on the Gale-Shapley algorithm:Advantages and challenge[J]. International Journal of Computer Integrated Manufacturing, 2017, 30(4-5):420-432.
[91] Cheng Y, Tao F, Liu Y, et al. Energy-aware resource service scheduling based on utility evaluation in cloud manufacturing system[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2013, 227(12):1901-1915.
[92] Borenstein D. A directed acyclic graph representation of routing manufacturing flexibility[J]. European Journal of Operational Research, 2000, 127(1):78-93.
[93] Bris R. Parallel simulation algorithm for maintenance optimization based on directed acyclic graph[J]. Reliability Engineering & System Safety, 2008, 93(6):874-884.
[94] Browning T R. Applying the design structure matrix to system decomposition and integration problems:A review and new directions[J]. IEEE Transactions on Engineering Management, 2001, 48(3):292-306.
[95] 安波,廖文和,郭宇,等.基于相关性的扩散制造任务规划方法研究[J].中国机械工程, 2011, 22(23):2839-2844.An B, Liao W H, Guo Y, et al. Study on extended manufacturing task planning method based on correlation[J]. China Mechanical Engineering, 2011, 22(23):2839-2844.
[96] 包北方,杨育,李斐,等.产品定制协同开发任务分解模型[J].计算机集成制造系统, 2014, 20(7):1537-1545.Bao B F, Yang Y, Li F, et al. Decomposition model in product customization collaborative development task[J]. Computer Integrated Manufacturing Systems, 2014, 20(7):1537-1545.
[97] Gerasoulis A, Yang T. On the granularity and clustering of directed acyclic task graphs[J]. IEEE Transactions on Parallel and Distributed Systems, 1993, 4(6):686-701.
[98] 易树平,谭明智,郭宗林,等.云制造服务平台中的制造任务分解模式优化[J].计算机集成制造系统, 2015, 21(8):2201-2212.Yi S P, Tan M Z, Guo Z L, et al. Manufacturing task decomposition optimization in cloud manufacturing service platform[J]. Computer Integrated Manufacturing Systems, 2015, 21(8):2201-2212.
[99] 刘明周,王强,凌琳.基于分层任务网络的云制造任务分解方法[J].中国机械工程, 2017, 28(8):924-930.Liu M Z, Wang Q, Ling L. Cloud manufacturing task decomposition method based on HTN[J]. China Mechanical Engineering, 2017, 28(8):924-930.
[100] Stachtiari E, Mentis A, Katsaros P. Rigorous analysis of service composability by embedding WS-BPEL into the BIP component framework[C]//2012 IEEE 19th International Conference on Web Services, 2012:319-326.
[101] Oh S C, Lee D, Kumara S R T. Effective web service composition in diverse and large-scale service networks[J]. IEEE Transactions on Services Computing, 2008, 1(1):15-32.
[102] Rao J, Küngas P, Matskin M. Composition of semantic web services using linear logic theorem proving[J]. Information Systems, 2006, 31(4-5):340-360.
[103] Valerdi R, Zhou S M. Guest editorial special section on enterprise systems[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3):630-630.
[104] Zhou L, Zhang L, Sarker B R, et al. An event-triggered dynamic scheduling method for randomly arriving tasks in cloud manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2018, 31(3):318-333.
[105] Akbaripour H, Houshmand M, Van Woensel T, et al. Cloud manufacturing service selection optimization and scheduling with transportation considerations:Mixed-integer programming models[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4):43-70.
[106] Liu Y, Xu X, Zhang L, et al. An extensible model for multitask-oriented service composition and scheduling in cloud manufacturing[J]. Journal of Computing and Information Science in Engineering, 2016, 16(4):041009.
[107] Wei X, Liu H. A cloud manufacturing resource allocation model based on ant colony optimization algorithm[J]. International Journal of Grid and Distributed Computing, 2015, 8(1):55-66.
[108] Cheng Y, Zhao D, Tao F, et al. Complex networks based manufacturing service and task management in cloud environment[C]//2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 2015:242-247.
[109] Liu Y, Wang L, Wang Y, et al. Multi-agent-based scheduling in cloud manufacturing with dynamic task arrivals[J]. Procedia CIRP, 2018, 72:953-960.
[110] Wang D, Yu Y, Yin Y, et al. Multi-agent scheduling problems under multitasking[J]. International Journal of Production Research, 2021, 59(12):3633-3663.
[111] Zhou L, Zhang L. Theory, methodology, tools and applications for modeling and simulation of complex systems[M]. Springer, Singapore, 2016:20-24.
[112] Li B, Yang Y, Su J, et al. Two-sided matching decision-making model with hesitant fuzzy preference information for configuring cloud manufacturing tasks and resources[J]. Journal of Intelligent Manufacturing, 2020. doi:10.1007/s10845-020-01552-7.
[113] Tong H, Zhu J. New peer effect-based approach for service matching in cloud manufacturing under uncertain preferences[J]. Applied Soft Computing, 2020, 94:106444.
[114] 赵道致,丁琳.云制造平台资源双边匹配机制及稳定性[J].系统工程, 2017, 35(2):109-115.Zhao D Z, Ding L. Two-sided Resource matching mechanism and stability of cloud manufacturing platform[J]. Systems Engineering, 2017, 35(2):109-115.
[115] Cheng Y, Tao F, Zhao D, et al. Modeling of manufacturing service supply-demand matching hypernetwork in service-oriented manufacturing systems[J]. Robotics and Computer-Integrated Manufacturing, 2017, 45:59-72.
[116] Mell P, Grance T. The NIST definition of cloud computing[R]. National Institute of Standards and Technology, 2011.
[117] Tsai C W, Rodrigues J J P C. Metaheuristic scheduling for cloud:A survey[J]. IEEE Systems Journal, 2013, 8(1):279-291.
[118] Kalra M, Singh S. A review of metaheuristic scheduling techniques in cloud computing[J]. Egyptian Informatics Journal, 2015, 16(3):275-295.
[119] 李桂君,寇晨欢,胡军,等.云服务资源调度机制的协同与优化研究[J].系统科学与数学, 2020, 40(8):1365-1383.Li G J, Kou C H, Hu J, et al. The collaboration and optimization of resource scheduling mechanism for cloud service[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(8):1365-1383.
[120] 张雨,李芳,周涛.云计算环境下基于遗传蚁群算法的任务调度研究[J].计算机工程与应用, 2014(6):51-55.Zhang Y, Li F, Zhou T. Task scheduling algorithm based on genetic ant colony algorithm in cloud computing environment[J]. Computer Engineering and Applications, 2014(6):51-55.
[121] Jang S H, Kim T Y, Kim J K, et al. The study of genetic algorithm-based task scheduling for cloud computing[J]. International Journal of Control and Automation, 2012, 5(4):157-162.
[122] Saeedi S, Khorsand R, Bidgoli S G, et al. Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing[J]. Computers & Industrial Engineering, 2020, 147:106649.
[123] 杨嫒,钱斌,胡蓉,等.精确动态规划算法求解绿色单机调度问题[J].控制与决策, 2021, 36(8):1891-1900.Yang Y, Qian B, Hu R, et al. Exact dynamic programming algorithm for green single machine scheduling problem[J]. Control and Decision, 2021, 36(8):1891-1900.
[124] 郑斐峰,隋杨,徐寅峰.考虑最小化最大完工时间间隔的三台平行机调度[J].系统工程理论与实践, 2021, 41(4):1025-1036.Zheng F F, Sui Y, Xu Y F. Three parallel machines scheduling with minimizing the maximum inter-completion time[J]. Systems Engineering — Theory & Practice, 2021, 41(4):1025-1036.
[125] 袁帅鹏,李铁克,王柏琳,等.两阶段流水车间成组调度问题的迭代贪婪算法[J].系统工程理论与实践, 2020, 40(10):2707-2716.Yuan S P, Li T K, Wang B L, et al. Co-evolutionary iterated greedy algorithm for the two-stage flow shop group scheduling problem[J]. Systems Engineering — Theory & Practice, 2020, 40(10):2707-2716.
[126] 魏麒,吴用,蒋义伟,等. MapReduce系统中的两阶段混合流水作业调度算法[J].系统工程理论与实践, 2020, 40(5):1255-1265.Wei Q, Wu Y, Jiang Y W, et al. Algorithms for two-stage hybrid flow shop in MapReduce systems[J]. Systems Engineering — Theory & Practice, 2020, 40(5):1255-1265.
[127] 郭晨,曾思豪,郭钧,等.混合分布估计算法求解模糊分布式装配柔性车间调度问题[J].系统工程理论与实践, 2021, 41(4):1037-1048.Guo C, Zeng S H, Guo J, et al. Hybrid estimation of distribution algorithm for distributed assembly flexible job shop scheduling problem with fuzzy processing time[J]. Systems Engineering — Theory & Practice, 2021, 41(4):1037-1048.
[128] 黄学文,陈绍芬,周阗玉,等.求解柔性作业车间调度问题的一种新邻域结构[J].系统工程理论与实践, 2021, 41(9):2367-2378.Huang X W, Chen S F, Zhou T Y, et al. A new neighborhood structure for solving the flexible job-shop scheduling problem[J]. Systems Engineering — Theory & Practice, 2021, 41(9):2367-2378.
[129] 郑斐峰,靳凯媛,张娥,等.考虑订单类型的两台平行批处理机在线调度模型研究[J].中国管理科学, 2021, 29(5):173-179.Zheng F F, Jin K Y, Zhang E, et al. Online two parallel batch machines scheduling with order types[J]. Chinese Journal of Management Science, 2021, 29(5):173-179.
[130] Wang J, Li X, Zhu X. Intelligent dynamic control of stochastic economic lot scheduling by agent-based reinforcement learning[J]. International Journal of Production Research, 2012, 50(16):4381-4395.
[131] Shi D, Fan W, Xiao Y, et al. Intelligent scheduling of discrete automated production line via deep reinforcement learning[J]. International Journal of Production Research, 2020, 58(11):3362-3380.
[132] Luo S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020, 91:106208.
[133] Chen S, Fang S, Tang R. A reinforcement learning based approach for multi-projects scheduling in cloud manufacturing[J]. International Journal of Production Research, 2019, 57(10):3080-3098.
[134] Liu Y, Zhang L, Wang L, et al. A framework for scheduling in cloud manufacturing with deep reinforcement learning[C]//2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 2019, 1:1775-1780.
[135] Liang H, Wen X, Liu Y, et al. Logistics-involved QoS-aware service composition in cloud manufacturing with deep reinforcement learning[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:101991.
[136] Dong T, Xue F, Xiao C, et al. Task scheduling based on deep reinforcement learning in a cloud manufacturing environment[J]. Concurrency and Computation:Practice and Experience, 2020, 32(11):1-12.
[137] Zhang Y, Wang J, Liu S, et al. Game theory based real-time shop floor scheduling strategy and method for cloud manufacturing[J]. International Journal of Intelligent Systems, 2017, 32(4):437-463.
[138] Ren L, Cui J, Wei Y, et al. Research on the impact of service provider cooperative relationship on cloud manufacturing platform[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):2279-2290.
[139] Chen J, Huang G Q, Wang J Q, et al. A cooperative approach to service booking and scheduling in cloud manufacturing[J]. European Journal of Operational Research, 2019, 273(3):861-873.
[140] 赵道致,李润.云制造模式下企业剩余资源分享决策研究[J].工业工程与管理, 2018, 23(2):33-39.Zhao D Z, Li R. Research on decision-making of firm's surplus resources sharing in cloud manufacturing[J]. Industrial Engineering and Management, 2018, 23(2):33-39.
[141] 赵道致,杜其光.供应链中需求信息更新对制造能力共享的影响[J].系统管理学报, 2017, 26(2):374-380+389.Zhao D Z, Du Q G. The impact of demand information updating on sharing of manufacturing capacity in the supply chain[J]. Journal of Systems & Management, 2017, 26(2):374-380+389.
[142] 王旭亮,柴旭东,张程,等.云制造环境下跨企业协同生产调度算法[J].计算机集成制造系统, 2019, 25(2):412-420.Wang X L, Chai X D, Zhang C, et al. Collaborative production planning algorithm for cross-enterprises in cloud manufacturing[J]. Computer Integrated Manufacturing Systems, 2019, 25(2):412-420.
[143] Hao Y, Fan Y, Zhang J. Service recommendation based on description reconstruction in cloud manufacturing[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(3):294-306.
[144] Tao F, Cheng J, Cheng Y, et al. SDMSim:A manufacturing service supply-demand matching simulator under cloud environment[J]. Robotics and Computer-Integrated Manufacturing, 2017, 45:34-46.

Funding

National Natural Science Foundation of China (71971044,71871183,72091213);Major Program of National Social Science Foundation of China (20&ZD084)
PDF(1385 KB)

2839

Accesses

0

Citation

Detail

Sections
Recommended

/