The application of signed range to forecasting the volatility of financial

LIU Yi, QU Jianwen, DONG Xugao, ZHANG Lei

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2256-2270.

PDF(1186 KB)
PDF(1186 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2256-2270. DOI: 10.12011/SETP2020-1181

The application of signed range to forecasting the volatility of financial

  • LIU Yi, QU Jianwen, DONG Xugao, ZHANG Lei
Author information +
History +

Abstract

Due to the excellent performance of range in improving volatility forecast and the wide-spread use of information based on the sign of return in the capital market, this paper constructs the signed range by combining range and the sign of return and introduces it into four mainstream HAR models. The empirical results based on the 5-minute high-frequency trading data of the Shanghai Composite Index indicate that signed range has a significant "asymmetric" impact on future volatility in the short term, with negative (positive) signed range leading to significantly higher (lower) future volatility. The out-of-sample prediction results show that the introduction of singed range can significantly improve the model's predictive ability, and the results are robust. Last but not least, HAR-RSV-SR model and HAR-Q-SR model are the best models in short and medium and long horizons than others models discussed in this paper. The conclusion of this article has important reference value for the application of volatility in asset pricing and risk management.

Key words

volatility forecasting / HAR-RV model / signed range / MCS test

Cite this article

Download Citations
LIU Yi , QU Jianwen , DONG Xugao , ZHANG Lei. The application of signed range to forecasting the volatility of financial. Systems Engineering - Theory & Practice, 2021, 41(9): 2256-2270 https://doi.org/10.12011/SETP2020-1181

References

[1] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica, 1982, 50(4):987-1007.
[2] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 21(3):307-328.
[3] Taylor S J. Modelling financial time series[M]. Chichester:John Wiley, 1986.
[4] Andersen T G, Bollerslev T. Deutsche mark-dollar volatility:Intraday activity patterns, macroeconomic announcements, and longer run dependencies[J]. Journal of Finance, 1998, 53(1):219-265.
[5] Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models[J]. Journal of the Royal Statistical Society, 2002, 64(2):253-280.
[6] Müller U A, Dacorogna M M, Davé R D, et al. Fractals and intrinsic time:A challenge to econometricians[J], Social Science Electronic Publishing, 1993.
[7] Corsi F. A simple approximate long-memory model of realized-volatility[J]. Journal of Financial econometrics, 2009, 7(2):174-196.
[8] Andersen T G, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J]. Review of Economics & Statistics, 2007, 89(4):701-720.
[9] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of financial econometrics, 2004, 2(1):1-37.
[10] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of Financial Econometrics, 2006, 4(1):1-30.
[11] 文凤华, 刘晓群, 唐海如, 等. 基于LHAR-RV-V模型的中国股市波动性研究[J]. 管理科学学报, 2012, 15(6):59-67.Wen F H, Liu X Q, Tang H R, et al. Research on China's stock market fluctuations based on LHAR-RV-V model[J]. Journal of Management Sciences in China, 2012, 15(6):59-67.
[12] 陈浪南, 杨科. 中国股市高频波动率的特征, 预测模型以及预测精度比较[J]. 系统工程理论与实践, 2013, 33(2):296-307.Chen L N, Yang K. High-frequency volatility features, forecast model and performance evaluation[J]. Systems Engineering-Theory & Practice, 2013, 33(2):296-307.
[13] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk-realised semivariance[R]. Working Paper, 2008.
[14] Patton A J, Sheppard K. Good volatility, bad volatility:Signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3):683-697.
[15] Bollerslev T, Patton A J. Quaedvlieg R. Exploiting the errors:A simple approach for improved volatility forecasting[J], Journal of Econometrics, 2016, 192(1):1-18.
[16] Wang Y, Ma F, Wei Y, et al, Forecasting realized volatility in a changing world:A dynamic model averaging approach[J]. Journal of Banking & Finance, 2016, 64(1):136-149.
[17] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized exchange rate volatility[J]. Journal of the American Statistical Association, 2001, 96(1):42-55.
[18] Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models[J]. Journal of the Royal Statistical Society, 2002, 64(2):253-280.
[19] Bandi F M, Russell J R. Microstructure noise, realized variance, and optimal sampling[J]. The Review of Economic Studies, 2008, 75(2):339-369.
[20] Bandi F M, Russell J R. Separating microstructure noise from volatility[J]. Journal of Financial Economics, 2006, 79(3):655-692.
[21] Yacine A S, Mykland P A, Zhang L. How often to sample a continuous-time process in the presence of market microstructure noise[J]. The Review of Financial Studies, 2005, 18(2):351-416.
[22] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics[J], 2006, 24(2):127-161.
[23] Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business, 1980, 53(1):61-65.
[24] Andersen T G, Bollerslev T. Answering the skeptics:Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4):885-905
[25] Brandt M W, Diebold F X. A no-arbitrage approach to range-based estimation of return covariances and correlations[J]. Journal of Business, 2006, 79(1):61-74.
[26] Martin M, Dick V D. Measuring volatility with the realized range[J]. Journal of Econometrics, 2007, 138(1):181-207.
[27] Alizadeh S, Brand M W, Diebold F X. Range-based estimation of stochastic volatility models[J]. Journal of Finance, 2002(5):1047-1092.
[28] Chou R. Forecasting financial volatilities with extreme values:The conditional auto regressive range (CARR) model[J]. Journal of Money Credit and Banking, 2005, 37(3):561-582.
[29] Hansen P R, Zhou H. Exponential GARCH modeling with realized measures of volatility[J]. Journal of Business & Economic Statistics, 2016, 34(2):269-287.
[30] 唐勇, 刘微. 加权已实现极差四次幂变差分析及其应用[J]. 系统工程理论与实践, 2013, 33(11):2766-2775.Tang Y, Liu W. Analysis of weighted realized range-based quadpower variation and its application[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2766-2775.
[31] 赵华. 中国股市的跳跃性与杠杆效应——基于已实现极差方差的研究[J]. 金融研究, 2012(11):179-192.Zhao H. Jumps and leverage effects of Chinese stock market[J]. Journal of Financial Research, 2012(11):179-192.
[32] 贺志芳, 杨鑫, 龚旭, 等. 股指期货市场波动率的预测研究[J]. 系统科学与数学, 2016, 36(8):1160-1174.He Z F, Yang X, Gong X, et al. Predicting stock index futures market volatility[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(8):1160-1174.
[33] 李俊儒, 汪寿阳, 魏云捷. 基于波动率测量误差的波动率预测模型[J]. 系统工程理论与实践, 2018, 38(8):1905-1918.Li J R, Wang S Y, Wei Y J. Volatility forecasting models based on volatility measurement error[J]. Systems Engineering-Theory & Practice, 2018, 38(8):1905-1918.
[34] Ang A, Chen J, Xing Y. Downside risk[J]. Review of Financial Studies, 2006, 19(4):1191-1239.
[35] Corsi F, Renó R. Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[J]. Journal of Business and Economic Statistics, 2012, 30(3):368-380.
[36] 马锋, 魏宇, 黄登仕. 基于符号收益和跳跃变差的高频波动率模型[J]. 管理科学学报, 2017, 20(10):31-43.Ma F, Wei Y, Huang D S. Forecasting the realized volatility based on the signed return and signed jump variation[J]. Journal of Management Sciences in China, 2017, 20(10):31-43.
[37] 龚旭, 曹杰, 文凤华, 等. 基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究[J]. 系统工程理论与实践, 2020, 40(5):1113-1133.Gong X, Cao J, Wen F H, et al. The HAR-type model with leverage ande structural breaks and their applications to the volatility forecasting of stock market[J]. Systems Engineering-Theory & Practice, 2020, 40(5):1113-1133.
[38] 龚谊洲, 黄苒. 基于外部信息冲击的符号跳跃变差高频波动率模型[J]. 系统工程理论与实践, 2019, 39(9):2189-2202.Gong Y Z, Huang R. A high-frequency volatility model with signed jumps variation based on external information impact[J]. Systems Engineering-Theory & Practice, 2019, 39(9):2189-2202.
[39] Chevallier J, Ielpo F, Sévi B. Do jumps help in forecasting the density of returns?[R]. European Economic Association & Econometric Society, 2011.
[40] Andersen T G, Benzoni L, Lund J. An empirical investigation of continuous time equity return models[J]. The Journal of Finance, 2002, 57(3):1239-1284.
[41] Eraker B, Johannes M, Polson N. The impact of jumps in volatility and returns[J]. The Journal of Finance, 2003, 58(3):1269-1300.
[42] Li H, Wells M T, Cindy L Y. A Bayesian analysis of return dynamics with Lévy jumps[J]. Review of Financial Studies, 2008, 21(5):2345-2378.
[43] Liu Y, Liu H F, Zhang L. Modeling and forecasting return jumps using realized variation measures[J]. Economic Modelling, 2019, 76:63-80.
[44] 张传海. 基于门限预平均已调整多次幂变差的可积波动估计及其应用[J]. 系统工程理论与实践, 2019, 39(4):946-969.Zhang C H. A new estimation for integrated volatility based on threshold pre-averaging modulated multi-power variation and its application[J]. Systems Engineering-Theory & Practice, 2019, 39(4):946-969.
[45] Huang X, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of financial econometrics, 2005, 3(4):456-499.
[46] 唐勇, 崔金鑫. 中国股票市场最优套期保值比率研究——基于高阶矩HAR模型[J]. 系统科学与数学, 2018, 38(9):1036-1054.Tang Y, Cui J X. Research on optimal hedging ratio of Chinese stock market based on higher moments HAR model[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(9):1036-1054.
[47] Tian F P, Yang K, Chen L N. Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity[J]. International Jourmal of Forecasting, 2017, 33(1):132-152.
[48] Ma F, Wei Y, Huang D S, et al. Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility[J]. Physica A:Statistical Mechanics and its Applications, 2014, 405:171-180.
[49] Wen F, Gong X, Cai S. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59:400-413.
[50] Fleming J, Kirby C, Ostdiek B. The economic value of volatility timing using "realized" volatility[J]. Journal of Financial Economics, 2003, 67(3):473-509.
[51] Chen X, Ghysels E. News-Good or bad-And its impact on volatility predictions over multiple horizons[J]. Review of Financial Studies, 2011, 24(1):46-81.
[52] Diebold F X, Mariano R S. Comparing predictive accuracy[J]. Journal of Business and Economic Statistics, 2002, 20(1):134-144.
[53] Hansen P R, Lunde A, James M N. The model confidence set[J]. Econometrica, 2011, 79(2):453-497.
[54] 蔡光辉, 应雪海. 基于跳跃、好坏波动率和马尔科夫状态转换的高频波动率模型预测[J]. 系统科学与数学, 2020, 40(3):521-546.Cai G H, Ying X H. The forecasting performance of the high-frequency volatility models based on jumps, good-bad volatility and markov regime-switching[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(3):521-546.
[55] Bekaert G, Hoerova M. The vix, the variance premium and stock market volatility[J]. Journal of Econometrics, 2014, 183(2):181-192.
[56] Conrad C, Loch K. The variance risk premium and fundamental uncertainty[J]. Economics Letters, 2015, 132:56-60.

Funding

International Cooperation and Exchanges Projects of National Natural Science Foundation of China (71661137006); Hunan Social Science Foundation (16YBA078)
PDF(1186 KB)

768

Accesses

0

Citation

Detail

Sections
Recommended

/