Portfolio optimization based on realized semi-covariance

QIAN Long, PENG Fangping, SHEN Xinyuan, SUN Xiaoxia

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 34-44.

PDF(900 KB)
PDF(900 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 34-44. DOI: 10.12011/SETP2020-1029

Portfolio optimization based on realized semi-covariance

  • QIAN Long1, PENG Fangping2, SHEN Xinyuan3, SUN Xiaoxia4
Author information +
History +

Abstract

Among traditional volatility measurements, normal covariance estimators are not able to distinguish the downside risk and upside gains of asset return, while traditional lower partial moment estimators are asymmetric and impossible to sum up. Therefore, this paper introduces a new risk measurement called realized semi-covariance (RSCOV) to conduct volatility forecasting and portfolio optimization. Based on decomposition of realized covariance matrix, we test it on two common diversification investing strategies, equally-weighted risk contribution (ERC) strategy and global minimum variance (GMV) strategy. To perform forecasting, we adopt online weighted ensemble (OWE) algorithm in machine learning domain to boost the out-of-sample performance of HAR-RV. Compared to existing covariance or realized covariance, we find that realized downside semi-covariance matrix, that only contains information about negative volatility, can be used to better balance the risk contribution of assets in portfolio. Then, using high-frequency data of A share market spanning from 2011 to 2018, empirical result shows that our OWE-HAR-RV can outperform HAR-RV in monthly prediction. Lower RSCOV can be applied to ensure risk parity and minimum variance portfolio strategies to achieve better allocated asset weights and lower maximum loss while maintaining certain portfolio return.

Key words

portfolio optimization / volatility forecasting / realized semi-covariance / online weighted ensemble algorithm

Cite this article

Download Citations
QIAN Long , PENG Fangping , SHEN Xinyuan , SUN Xiaoxia. Portfolio optimization based on realized semi-covariance. Systems Engineering - Theory & Practice, 2021, 41(1): 34-44 https://doi.org/10.12011/SETP2020-1029

References

[1] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2):579-625.
[2] Liu Q Q. On portfolio optimization:How and when do we benefit from high-frequency data?[J]. Journal of Applied Econometrics, 2009, 24(4):560-582.
[3] Patton A J, Sheppard K. Good volatility, bad volatility:Signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3):683-697.
[4] Bollerslev T, Li S Z, Zhao B Z. Good volatility, bad volatility, and the cross section of stock returns[J]. Journal of Financial and Quantitative Analysis, 2020, 55(3):751-781.
[5] Roy A D. Safety first and the holding of assets[J]. Econometrica:Journal of the Econometric Society, 1952:431-449.
[6] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.
[7] Michaud R O. The Markowitz optimization enigma:Is ‘optimized’ optimal?[J]. Financial Analysts Journal, 1989, 45(1):31-42.
[8] Ledoit O, Wolf M. Honey, I shrunk the sample vovariance matrix[J]. The Journal of Portfolio Management, 2004, 30(4):110-119.
[9] Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfolio choice[J]. The Journal of Portfolio Management, 1993, 19(2):6-11.
[10] Qian E. On the financial interpretation of risk contribution:Risk budgets do add up[J]. Journal of Investment Management, 2006, 4(4):41-51.
[11] Maillard S, Roncalli T, Teiletche J. The properties of equally weighted risk contribution portfolios[J]. The Journal of Portfolio Management, 2010, 36(4):60-70.
[12] Bai X, Scheinberg K, Tutuncu R. Least-squares approach to risk parity in portfolio selection[J]. Quantitative Finance, 2016, 16(3):357-376.
[13] Choueifaty Y, Coignard Y. Toward maximum diversification[J]. The Journal of Portfolio Management, 2008, 35(1):40-51.
[14] Clarke R, De Silva H, Thorley S. Risk parity, maximum diversification, and minimum variance:An analytic perspective[J]. The Journal of Portfolio Management, 2013, 39(3):39-53.
[15] Andersen T G, Bollerslev T. Answering the skeptics:Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4):885-905.
[16] Barndorff-Nielsen O E, Shephard N. Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2001, 63(2):167-207.
[17] Oomen R C A. Properties of bias-corrected realized variance under alternative sampling schemes[J]. Journal of Financial Econometrics, 2005, 3(4):555-577.
[18] Zhang L, Mykland P A, Ait-Sahalia Y. A tale of two time scales:Determining integrated volatility with noisy high-frequency data[J]. Journal of the American Statistical Association, 2005, 100(472):1394-1411.
[19] Jacod J, Li Y Y, Mykland P A, et al. Microstructure noise in the continuous case:The pre-averaging approach[J]. Stochastic Processes and Their Applications, 2009, 119(7):2249-2276.
[20] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2):174-196.
[21] 黄嵩,倪宣明,钱龙,等.基于集成学习的在线高维投资组合策略[J].系统科学与数学, 2020, 40(1):29-40. Huang S, Ni X M, Qian L, et al. Large-dimensional online portfolio strategy based on ensemble learning[J]. Journal of Systems Science&Mathematical Science, 2020, 40(1):29-40.
[22] 倪宣明,钱龙,赵慧敏,等.高频数据下高维协方差阵的RCM算法估计与应用[J].系统工程理论与实践, 2019, 39(8):1943-1953.Ni X M, Qian L, Zhao H M, et al. Large-dimensional covariance matrix estimation and its application with RCM using high frequency data[J]. Systems Engineering-Theory&Practice, 2019, 39(8):1943-1953.
[23] Chiriac R, Voev V. Modelling and forecasting multivariate realized volatility[J]. Journal of Applied Econometrics, 2011, 26(6):922-947.
[24] Gouriéroux C, Jasiak J, Sufana R. The Wishart autoregressive process of multivariate stochastic volatility[J]. Journal of Econometrics, 2009, 150(2):167-181.
[25] Golosnoy V, Gribisch B, Liesenfeld R. The conditional autoregressive Wishart model for multivariate stock market volatility[J]. Journal of Econometrics, 2012, 167(1):211-223.
[26] 陈声利,关涛,李一军.基于跳跃、好坏波动率与百度指数的股指期货波动率预测[J].系统工程理论与实践, 2018, 38(2):299-316. Chen S L, Guan T, Li Y J. Forecasting realized volatility of Chinese stock index futures based on jumps, good-bad volatility and Baidu index[J]. Systems Engineering-Theory&Practice, 2018, 38(2):299-316.
[27] 李俊儒,汪寿阳,魏云捷.基于波动率测量误差的波动率预测模型[J].系统工程理论与实践, 2018, 38(8):1905-1918. Li J R, Wang S Y, Wei Y J. Volatility forecasting models based on volatility measurement error[J]. Systems Engineering-Theory&Practice, 2018, 38(8):1905-1918.
[28] 龚旭,曹杰,文凤华,等.基于杠杆效应和结构突变的HAR族模型及其对股市波动率的预测研究[J].系统工程理论与实践, 2020, 40(5):1113-1133.Gong X, Cao J, Wen F H, et al. The HAR-type models with leverage and structural breaks and their applications to the volatility forecasting of stock market[J]. Systems Engineering-Theory&Practice, 2020, 40(5):1113-1133.
[29] Patton A J, Sheppard K. Good volatility, bad volatility:Signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3):683-697.
[30] Bollerslev T, Li J, Patton A J, et al. Realized semicovariances[J]. Econometrica, 2020, 88(4):1515-1551.
[31] Soares S G, Araújo R. An on-line weighted ensemble of regressor models to handle concept drifts[J]. Engineering Applications of Artificial Intelligence, 2015, 37:392-406.
[32] Kinnebrock S, Podolskij M. A note on the central limit theorem for bipower variation of general functions[J]. Stochastic Processes and Their Applications, 2008, 118(6):1056-1070.

Funding

National Natural Science Foundation of China (71673312)
PDF(900 KB)

939

Accesses

0

Citation

Detail

Sections
Recommended

/